Abstract
Mycorrhizae are fungi that live in association with the roots of plants, thus constituting an essential symbiosis in terrestrial ecosystems. Arbuscular endomycorrhizae, phylum Glomeromycota, are the most widely distributed in all ecosystems. They colonize the roots of the majority of terrestrial plants and provide several ecoservices. They are involved in plant growth, absorption of water and specific mineral elements (phosphorus, nitrogen, copper, zinc, and some vitamins), structural stability of soils, and participate in the resistance to biotic and abiotic stresses. The interaction between phosphate-solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) positively influences soil fertility and plant productivity.This review provideS information on previous research carried out in Morocco on mycorrhizal fungi, particularly the endomycorrhizae. Moreover, this review analyzes the positive role that mycorrhizal fungi can play as growth biostimulators and bioprotectors of plant species.
Keywords: Morocco, mycorrhizae, diversity, systematic, importance
INTRODUCTION
Mycorrhizal symbiosis is a mutualistic symbiotic association between a mycorrhizal fungus (“myco” fungus in Greek) and a host plant root (“rhiza” in Greek) (Sieverding, 1991; Strullu, 1991). It is estimated that 90% of plant families can form mycorrhizal associations (Newman and Reddell, 1987; Brundrett, 2002).
Mycorrhization, a universal phenomenon (Malloch, 1980; Smith and Read, 2008), is present in all types of soil and in all climates (Plenchette, 2005). There are three types of mycorrhizae ectoendomycorrhizae, ectomycorrhizae and endomycorrhizae (Peyronel, 1969; Brundrett, 2002, 2004; Smith et Read, 2008). Some are very specific and only develop with a few plant species such as the Ericaceae, while others are more general and are widely distributed in the various ecosystems of the globe (Fortin, 2008).
Arbuscular mycorrhizal fungi (AMF) are part of the endomycorrhizae, the oldest and most widespread type of mycorrhizae (Redecker, 2000). AMFs involve more than 200 species of microscopic fungi that belong to the Glomeromycota phylum (Schüßler., 2001).These AMFs form associations with the roots of approximately 80% of vascular plants on the planet (Garbaye, 2013; Fortin, 2008; Smith, 2003). Ferns, lycopods, several conifers, monocotyledons, dicots and the majority of flowering plants are all provided with AMF (Fortin, 2008).
Arbuscular mycorrhizal fungi (AMF) bring several benefits to the plants (Read, 1991). They allow better mineral nutrition in plants whose phosphorus (Harrison, 2002; Helgason and Fitter, 2005; Feddermann, 2010), nitrogen (Subramanian and Charest, 1999; Hawkins, 2000; Hamel, 2004; Toussaint, 2004; Tanaka and Yano, 2005) and other essential cations such as zinc, copper, manganese and iron (Liu et al., 2000).
The objective of this review is to identify the different types of mycorrhizal fungi. Particular attention will be given to arbuscular mycorrhizal fungi. Thus, several components concerning these fungi have been elucidated: taxonomy, life cycle, diversity in Morocco, benefits for the host plant, mainly the mobilization of phosphorus, and their interactions with bacteria.
Mycorrhizae: a symbiotic plant-fungus association
Mycorrhizae are symbiotic associations between soil fungi and the roots of most plants (Plenchette, 1991; Smith and Read, 1997). Mycorrhization is a general phenomenon in plants with the exception of a few families such as Brassicaceae, Caryophyllaceae, Cyperaceae, Juncaceae, Chenopodiaceae and Amaranthaceae which show very few mycorrhizal associations (Malloch,1980; Strullu, 1991; Norman, 1995; Smith and Read, 2008). It is present in all ecosystems, all soil types and in all climates (Wubet, 2003; Plenchette, 2005; Tao and Zhiwei, 2005; Cho, 2006; Khade and Adoleya, 2009; Alguacil et al., 2009; Brundrett, 2009; Smith, 2010).
The main physiological basis of this symbiosis is a sharing of nutrients between the two partners (Dalpé, 2001). The plant receives from the fungal partner carbon compounds produced by photosynthesis, and the fungus supplies the plant with mineral elements, nitrogen, phosphorus (Mosse, 1973), and water from substrates (Hopkins, 2003; Smith and Read, 2008; Hodge, 2010). These fungi, obligatory symbionts of vascularized plants (Bago,1998; Pfeiffer, 1998; Requena, 2007), belong to the phyla of Ascomycota, Basidiomycota and Glomeromycota of the kingdom of Mycota (Schüßler, 2001; Taylor and Alexander, 2005).
Types of mycorrhizae
Several types of mycorrhizae are distinguished according to morphological characters (Smith and Read, 1997), ecological (Peyronel, 1969) and molecular. There are three main types of mycorrhizal associations: ectomycorrhizae, endomycorrhizae and ectendomycorrhizae (Peyronel, 1969; Brundrett, 2002, 2004; Smith and Read, 2008).
Ectomycorrhizae
Ectomycorrhizal fungi which contract a symbiotic association with plant species remain outside the cells and develop around the fine roots a mycelial sleeve (the mantle), then a network of hyphae develop between the cortical cells of the root via the intracellular spaces (Harley and Smith, 1983; Franck, 1885; Kendrick, 1992; Brundrett, 2004). The formed network is thus called the Hartig network via which the nutrient exchanges (sugars, amino acids, minerals) between the fungus and the plant (Burgess,1994; Dell, 1994; Smith and Read, 1997), are carried out. This type of association is formed almost exclusively in forest species, mainly trees and shrubs in boreal, temperate and mountainous regions and in certain tropical regions (Harley, 1984; Smith and Read, 2008), which represent about 5% of plant species (Duhoux and Nicole, 2004).
Ectomycorrhizal plants are Gymnosperms and especially Angiosperms represented by different families of plant species belonging to Myrtaceae, Pinaceae, Fagaceae, Dipterocarpaceae, Betulaceae, Salicaceae, Myrtiaceae, Abietaceae, Tiliaceae and Ulmaceae (Smith and Read, 2008; Van der Heijden, 2008; Matsuda, 2009; Brundrett, 2009). There are species of plants which are both endomycorrhizal and ectomycorrhizal, such as the genera Eucalyptus, Populus and Quercus (Read, 1977; Dos Santos, 2002; Egerton-Warburton and Allen, 2001; Nounsi, 2014).
Representatives of ectomycorrhiza play an important role in the growth of trees developing at various habitats across the globe (Le Tacon, 1985; Dexheimer, 1997; Kernaghan, 2005; Fortin, 2008; Brundrett, 2009).
Les champignons ectomycorhiziens appartiennent aux Basidiomycota (Bolets, Russules, Laccaires, etc), Ascomycota (Tuber, Elaphomyces, Pezizaceae (Terfezia) (Figure 1) and rarely to Zygomycetes (Endogone) (Strullu, 1991; Bruns et Shefferson, 2004; Hibbett, 2000 et 2007; Matheny, 2007; Tedersoo, 2010). Some ectomycorrhizae can be cultivated in pure culture on culture media, which facilitates their study compared to endomycorrhizae, considered as obligate fungi linked to their host plants.
In Morocco, for example, the most common ecotomycorrhizal plant species are oak groves, cedar groves, pine and eucalyptus plantations (Nounsi, 2014). Among the ectomycorrhizal species found under Eucalyptus in the Mamora forest, mention is made of Cenococcum geophilum Fr (Abourouh, 2000), Amanita pantherina (DC) (Outkoumit, 2011), Amanita spissa (Outkoumit, 2011), Paxillus involutus (Abourouh, 2000), Pisolithus tinctorius (Mont.) (Abourouh, 1999; Aouadj, 1997, 2000; Belkouri, 2009, 2011; Abourouh, 1983, 1992 and 2000; Bakkali Yakhlef, 2009 a and b; Zegayeetal., 2012), Scleroderma verrucosum (Abourouh, 2000; Ait Aguil, 2002), Russula virescens (Abourouh, 2000; Ait Aguil, 2005; El Assfouri, 2006).
The species encountered in the Mamora forest, North West Morocco, under Quercus suber are Cenococcum graniforme (Abourouh, 1987), Amanita boudieri Barla (Nounsi, 2017), Helvella lacunosa (El Assfouri, 2006; Haimed, 2007; Larouz, 2005), Amanita boudieri Barla (Malençon et Bertaut, 1970; Neville, 2009), Amanita caesarea (Malençon and Bertaut, 1970; Ait Aguil, 2005; Neville, 2009), Amanita muscaria (L.) Lam (Malençon and Bertault 1970; Neville, 2009; Outkoumit, 2011) (Figure 2), Amanita pantherina (DC) (Malençon and Bertault 1970; Neville, 2009; El Assfouri, 2006) (Figure 2), Amanita spissa (Outkoumit, 2011), Cortinarius caesiostramineus Rob (Malençon and Bertault, 1975; Consiglio, 2009), Hygrophorus chrysodon (Blatch) (Malençon and Bertault, 1975; Ait Aguil, 2005; Haimed, 2007), Inocybe asterospora (Malençon et Bertault, 1970), Inocybe pyriodora (Abourouh, 2000), Boletus mamorensis (El-Assfouri, 2006a; Outcoumit, 2006) (Figure 1). Gyroporus subalbellus (Outkoumit, 2011), Scleroderma bovista (Abourouh, 2000; Outcoumit, 2011), Scleroderma citrinum (Outcoumit, 2011), Xerocomus subtomentosus (Malençon et Bertaut, 1975; El Assfouri, 2006) (Figure 1), Lactarius bertillonii (El Assfouri, 2005), Lactarius chrysorrheus (Bertault 1978; Abourouh 2000; El Assfouri 2006; Outkoumit 2011)(Figure 1), Lactarius decipiens (Outkoumit, 2011) (Figure 1), Lactarius kuehnerianus (Bertault, 1978, El Assfouri, 2005), Lactarius rugatus (Outkoumit, 2011) (Figure 1), Russula alutacea (El-Assfouri, 2006b), Russula delica (El-Assfouri, 2006b), Russula farinipes Romell (El-Assfouri, 2006b), Russula fragilis (Bertault, 1978; Ait Aguil, 2005), Russula violeipes (El-Assfouri, 2006b), Russula virescens (Abourouh, 2000; Ait Aguil, 2005; El Assfouri, 2006), Lactarius rugatus (Outkoumit, 2011). Lactarius kuehnerianus (Bertault, 1978, El Assfouri, 2005), Lactarius chrysorrheus (Bertault 1978; Abourouh 2000; El Assfouri 2006; Outkoumit 2011) (Figure 1).
The ectomycorrhizal species cited in the Mamora forest under Pinus are Inocybe asterospora (Malençon and Bertault, 1970), Inocybe cookie Bres (Malençon and Bertault, 1970), Rhizopogon luteolus (Outkoumit, 2011), Scleroderma meridionale (Bakkali Yakhlef, 2009; Outcoumit, 2011), Cantharellus lutescens (Pers.) (Malençon et Bertault, 1975; El Assfouri, 2006), Lactarius deliciosus (L.) (Outkoumit, 2011), Lactarius fulvissimus Romagn, (Malençon and Bertault, 2009; Outkoumit, 2011), Russula fragilis (Bertault, 1978; Ait Aguil, 2005), Russula virescens (Abourouh, 2000; Ait Aguil, 2005; El Assfouri, 2006).
In Morocco, the most studied representatives of ectomycorrhizae, belonging to the class Ascomycetes, are generally Truffles of the genus Terfezia represented by several species: Terfezia olbiensis, Terfezia leptoderma, Terfezia boudieri, Terfezia claveryi (Khabar, 1992; Tahiri, 1997; Khabar and Najim, 2001; Khabar, 2002; El Assfouri. 2006a; Bouziani, 2009b; Abourouh, 2011; El Akil, 2016) (Figure 3).
Ectomychorizae play an important role in the growth and development of plants. Indeed, Acacia holosericea plants inoculated with ectomycorrhizae showed high growth compared to control plants (Founoune, 2001). Inoculation of Cedrus atlantica plants with three ectomycorrhizal fungi, Cortinarius cedretorum, Amanita vaginata and Inocybe geophylla, showed an apparent improvement, compared to that of the control, in growth (height, length of the main root, total dry mass), and foliar phosphorus and nitrogen concentrations of the plants (Gaba-chahboub, 2016).
In this sense, other works have highlighted the beneficial effect on the growth of the controlled inoculation of Pinus halepensis plants with Suillus collinitus (Rincón, 2007) and of Eucalyptus with Scleroderma sp. (Chen, 2006b). Mousain (1988) also reported a stimulation of growth in length, of the order of 45%, in cedar plants inoculated in the nursery with Tuber albidum.
Ectoendomycorrhizae
Ectoendomycorrhizae are mycorrhizae with both ectomycorrhizae structures and endomycorrhizae structures. These fungi have been cited in Ericaceae, Pinaceae and Monotropaceae (Brundrett, 1996; Barea, 2005). They form a mantle, an intercellular Hartig network reminiscent of the structures developed by ectomycorrhizal fungi, and, in addition, fungal hyphae that penetrate inside the cells in the form of intracellular balls (mycorhizes arbutoïdes) (Laiho, 1965; Mikola, 1965; Boullard, 1982; Yu, 2001; Fortin, 2008). Arbutoid ectendomycorrhizae are found particularly in the genera Arbutus and Arctostaphylos of the family Ericaceae and the monotropoids in the genera Monotropa and Pyrola of the family Pyrolaceae (Nakas and Hagedorn, 1990; Münzenberger, 1992; Laurent, 1995; Smith and Read, 2008). Sometimes, the ectoendomycorrhizae show much more unusual organizations, this is the case of monotropoid mycorrhizae (Monotropa hypopitys) (Dexheimer and Gérard, 1993). The fungus forms a mantle, a Hartig network. From the hyphae of the base of the mantle or the hyphae of the network of Hartig, a very acute wedge-shaped branching perforates the cell wall and represents the endomycorrhizal formation (Dexheimer, 1993). Most of these symbioses are carried out by Ascomycetes of the Wilcoxina genus (Garbaye, 2013), and by representatives of two orders Pezizales and Leotiales (Yu, 2001). Some species of Basidiomycetes can form this type of mycorrhiza (Brundett, 2002).
Endomycorrhizae
Endomycorrhizae are characterized by the absence of a fungal coat and the mycelium penetrates inside the cortical cells of the roots, and the morphology of the mycorrhizal root is not modified (Tisdall and Oades, 1979).
The fungus forms two types of characteristic structures, arbuscules and vesicles. Arbuscules are formed in root cortical cells and vesicles are seen in or between these cells (Abbott, 1982). There are two groups: the vesicular and arbuscular endomycorrhizae (VAM) which represent the most ancestral and most widespread mycorrhizal type in the current flora (Smith and Read, 1997; Redecker and Schüßler, 2010) and endomycorrhizae with septate hyphae of the ericoid type, associated with orchids (Strullu, 1991).
Vesicular and arbuscular mycorrhizae
Vesicular and arbuscular mycorrhizae form a symbiotic association with 200,000 (80%) plant species (Smith and Read, 2008; Khade et Adholeya, 2009; Bonfante, 2009): Bryophytes, Pteridophytes, Gymnosperms and Angiosperms (Barea and Honrubia, 1993; Smith and Read, 1997; Wubet, 2003; Dickson, 2007; Appelhans, 2008; Muthukumar and Prakash, 2009). They form fungal structures from intracellular hyphae which ramify intensely inside the cells of the root cortex giving off branches called arbuscules (Smith and Read, 1997 ; Chifflot, 2008; Guether, 2009). Same or other intercellular hyphae can form vesicles (Bofante-Fasola, 1984).
Mycorrhizae with clusters of septate ericoid hyphae
The mycorrhizal association with clusters of septate ericoid hyphae is found in the Ericaceae families (Dexheimer, 1997) and Epacridaceae. It is predominant in acidic soils rich in organic matter but poor in phosphorus and nitrogen (Cairney and Burke, 1998), and in cold wet soils (Issac, 1992). The fungal partner (Martin, 2007) is an Ascomycete of the genus of Pezizella (Smith and Read, 1997): Scytalidium vaccinii (order Helotiales) (Egger and Sigler, 1993) and Oidiodendron spp. (Order of Onygenales) (Sharples, 2000; Johansson, 2001) and Hymenoscyphus ericae. These fungi, characterized by penetration at the end of the root, are called “balloon” mycorrhizae (Smith and Read, 1997).
Mycorrhizae with clusters of orchidoid septate hyphae
Orchidoid mycorrhizae are characterized by the formation of clusters of hyphae in the cortical cells of the root tissue. These endomycorrhizae are formed between Orchidaceae and Basidiomycetes fungi (Issac, 1992) and are of great importance throughout the part of the life cycle of Orchidaceae during which these species depend on mycorrhization to obtain carbonaceous substrates (Smith and Read, 1997; Fortin, 2008).All orchids form a symbiotic association with fungi in the early stages of their development (Issac, 1992).
The roles of mycorrhizae
Mycorrhizal fungi play an important role in the stability of terrestrial ecosystems (Gianinazzi ., 2010), and also on the diversity of the microflora of the vegetation and consequently in the conservation and the structural stability of the soils (Rayn and Graham, 2002; Rillig, 2004; Cardoso and Kuyper, 2006). They play an essential role in increasing the uptake of very low mobility nutrients in the soil, such as Phosphorus (P) (Rhodes and Gerdemann, 1975; Bolan, 1991; Gianinazzi & Schüepp, 1994; Smith and Read, 1997; Duponnois, 2005a; Lambers, 2008) and metals (Abbott et Robson, 1982). But the role of these microorganisms is not limited to mineral nutrition alone; they also participate in resistance to biotic and abiotic stresses, and soil aggregation (Harley and Smith, 1983; Smith and Read, 1997; Rillig, 2001; Selosse, 2001). Research has shown that inoculation with endomycorrhizal fungi stimulates the growth of seedlings of Olea europaea, Eucalyptus, Quercus suber, Citrus aurantium L, Argania spinosa and others (Chliyeh et al., 2014; Nounsi, 2015; Semane, 2017; Hamidi, 2017; Artib, 2017; Sellal, 2019) (Figures 4; 5; 6; 7).
Phosphate nutrition
The mobilization and uptake of inorganic phosphate (PO43-) from the soil by AMFs are the key processes that improve plant growth (Cardoso, 2006; Babana and Antoun, 2006; Bucher, 2007).
Plants colonized by mycorrhiza benefit from a better phosphorus uptake (Lange and Vlek, 2000; Hopkins, 2003; Finlay, 2004; Helgason and Fitter, 2005; Plenchette, 2005; Feddermann, 2010). The mycorrhizal fungus is able to more efficiently absorb certain forms of phosphorus and transport them to the plant (Xinshu and Runjin, 1990; Plenchette, 2005). The hyphae of the fungus also produce various extracellular enzymes (phosphatase, phytase) which catalyze the hydrolysis of organic bonds by releasing orthophosphate and promoting the release of immobile phosphorus in the soil and the mineralization of organic sources of soil phosphates (Gobat, 2003). The phosphorus thus mobilized is easily absorbed and transported through the hyphae to the arbuscules and then to the host plant.
Phosphorus inputs to the plant can fluctuate from 20 to 100%, depending on the plant and fungal species and this independently of the effect of the fungus on the plant biomass (Smith, 2004; Faceli, 2010). Besides phosphorus, mycorrhizal symbiosis can facilitate the absorption of various other mineral elements such as N, K, Mg, Na, S, B, Br, Cl, Cu, Cr, Cs, Co, Fe, Mo, Mn, Ni, Si, Zn (Smith and Read, 1997; Caris, 1998; Duponnois and Bâ, 1999; Trépanier, 1998; Liu, 2002; Nogueira, 2004; Sorensen, 2005; Cardoso, 2006; He, 2007; Guether, 2009) are some of the minor elements often present in higher concentrations in mycorrhizal plants. The absorption of these elements, often difficult to assimilate by the plant, is improved by the mycorrhizal association (Srivastava, 1996).
Nitrogen nutrition
Like Phosphorus, Nitrogen is a vital component for the AMF and the plant (Smith, 2010). It enters into the formation of phospholipids, coenzymes and amino acids. Nitrogen is present in two forms in the soil: organic and mineral (nitrites, nitrates and ammonium ions). The AMF mycelium is able to take up N in the form of ammonium ions (NH4+) (Johansen, 1996), in the form of nitrates (NO3-) (Bago, 1996; Johansen, 1996) and in the form of amino acids (Hawkins, 2000), with a clear preference for ions NH4+ (López-Pedrosa, 2006). It can also accelerate the breakdown of organic matter to increase its bioavailability to plants (Hodge, 2001).
For legumes, AMF symbiosis plays an indirect role in nitrogen fixation, especially in phosphorus-poor soils (Dianda, 1991; Houngnandan, 2000). The presence of mycorrhizae allows optimal growth of the host plant; it is more regular and sometimes better than that produced by high fertilizer inputs (Abbott, 1983).
Hormonal activities
The concentration of phytohormones such as cytokinin, gibberellin, ethylene, abscisic acid, auxin and jasminic acid can vary in the plant depending on whether or not the mycorrhizal fungus is present (Hausse, 2005; Danneberg, 1992). Johansson (2004) showed the influence of AMFs on increasing and stimulating the level of growth hormones. The overall action of the hormones produced by the fungus affects the general habit of the plant, the growth of the aerial parts of which is often favored over that of the roots (Fortin, 2008).
Aggregation of soils
Arbuscular mycorrhizal symbiosis appears as a factor that positively influences soil aggregation through various mechanisms that improve their structure and stability (Bethlenfalvay, 1999). The AMF hyphae being present in large quantities in the soil, between 81 and 111 m3 per cm3 of soil (Miller, 1995), they have the property of acting on the macroaggregation of soil constituents and therefore on its stability (Tisdall, 1991). Indeed, these hyphae produce extracellular polysaccharides to which microaggregates (with a diameter of less than 250 μm) are attached to form stable macroaggregates (greater than 250 μm) (Tisdall, 1994). These polysaccharides would in fact be a glycoprotein, glomalin which acts as a glue (Rillig and Mummey, 2006) and which assembles the finest particles of the soil to make aggregates whose fundamental role for soil fertility is known, by retaining water and mineral elements and by promoting gas exchange and aeration (Fortin, 2008). The concentration of glomalin in soils depends on the host plant and the associated fungus (Rillig, 2002). This stability of the soil thus produced makes it possible to fight against erosion, the loss of nutrients and organic matter by leaching, which lead to a drop in productivity in agriculture (Schreiner and Bethlenfalvay, 1995).
Resistance to biotic stresses
In the different biotopes, the plants are continuously subjected to attacks from bacteria, fungi, nematodes, insects and fungal diseases. Indeed, AMFs appear to reduce the incidence and/or severity of deleterious effects caused by root-borne phytopathogenic fungi such as Rhizoctonia, Fusarium, Verticillium,P hytophthora, Pythium and Aphanomyces (St-Arnaud, 1995; Azcón-Aguilar and Barea, 1996; Whipps, 2004; Dalpé, 2006) and bacteria such as Xanthomonas campestris (Liu, 2007).
Plants inoculated with arbuscular mycorrhizal fungi have been experimentally proven to be more resistant to attack by pathogenic fungi and exposure to soil toxins (Moser and Haselwandter, 1983; Schtiepp, 1987; Fitter, 1991). Mycorrhizal fungi protect the host plant against pathogens by competing directly with them for energy resources and infection sites (Helgason and Fitter, 2005; Dalpé, 2006).
Studies have shown the effect of mycorrhization on plant protection against pathogens, case of tomato plants inoculated with Glomus mosseae against Phytophthora parasitica and Gaeumannomyces graminis, and barley plants inoculated with Glomus versiforme against Ralstonia solanacearum (Cordier, 1998; Pozo, 2002; Zhu et Yao, 2004; Khaosaad, 2007). Tomato plants inoculated with Glomus mosseae also showed protection against the nematodes Meloidogy neincognita and Pratylenchus penetrans (Vos, 2012).
Unlike root diseases, little work has been done on the protection conferred by AMFs on leaf diseases and the results are less conclusive and contradictory (Whipps, 2004). Better tolerance against the fungi responsible for powdery mildew (Blumeria sp. and Bremia lactucae), rust (Uromyces) and gray rot (Botrytis cinerea) has been described in mycorrhizal plants (Whipps, 2004; Jung, 2009; Moller, 2009). A delay in disease progression caused by Phytophthora infestans was also observed in potato plants inoculated with a commercial mycorrhizal inoculum (O’Herlihy, 2003). Plant resistance was also increased in mycorrhizal plants against necrotrophic pathogens, case of Alternaria solani (Fritz, 2006, De La Noval, 2007). This effect is, however, controversial in hemi-biotrophic fungi such as Colletotrichum orbiculare. Lee (2005) observed a decrease in anthracnose on the leaves of cucumber plants colonized by Glomus intraradices, whereas no effect was observed on cucumber plants mycorrhizal by Glomus mosseae (Chandanie, 2006).
However, if the induction of defense reactions in the root system of mycorrhizal plants has been clearly demonstrated for a long time, these mechanisms were only reported around 2009 in the leaves of mycorrhizal plants (Liu, 2007; Pozo, 2009).
Resistance to abiotic stresses
Besides the protection of plants by arbscular mycorrhizal fungi against biotic stresses, several studies show a protective effect of AMFs against abiotic stresses such as drought, salinity and pollution.
Water stress
Mycorrhization has an influence on the water status of plants. The extra-radicular hyphae of endomycorrhizal fungi can explore a much larger volume of soil than the roots and have access to a larger water reservoir, so it can help maintain the water and mineral balance of the plant. In addition, endomycorrhizal fungi lead to an increase in the resistance of the plant to lack of water (Sylvia, 1993; Meddich, 2000).
Mycorrhizal plants are less affected during periods of drought (Fortin, 2008; Smith and Read, 2008 ; Roy-Bolduc and Hijri; 2010). AMFs are important in sustainable agriculture because they improve the water relations of host plants and thus increase their resistance to drought (Allen, 1986; Nelsen, 1987). The extensive network of extra-radicular hyphae of endomycorrhizal fungi gives plants access to a larger water reservoir. AMFs can prevent irreversible wilting in plants and ensure, under water stress, faster stomata closure (Davies,1992; Subramanian and Charest, 1997). Mycorrhizal colonization also induces an increase in water conductivity in the host plant under conditions of osmotic stress and a better regulation of abscisic acid levels and consequently a better transpiration rate (Sánchez-Blanco, 2004; Aroca, 2007, 2008). These improvements seem to be related to the alleviation of oxidative stress, resulting in the production of antioxidant enzymes (superoxide dismutase, catalase and guaiacol-peroxidase) and non-enzymatic antioxidants (ascorbate and glutathione) (Wu and Zou, 2008; Ruiz-Sánchez, 2010).
Salt stress
High salinity (NaCl, NaCO3-, NaSO42- or magnesium salts) in soils can affect plant establishment, growth, development, and cause huge losses in productivity (Ramoliya, 2004; Evelin, 2009). Mycorrhizal fungi play a role in plant protection against salt stress. This protection is the result of better nutrition of mycorrhizal plants illustrated by an increase and/or a better selection in the uptake of nutrients, an accumulation of osmoregulatory compounds, an important stomatal conductance, a better transpiration, an increase in the photosynthetic activity or a limitation of leaf dehydration (Cantrell et Linderman, 2001; Feng, 2002; Aroca, 2006; Porcel, 2006; Sheng, 2008, Evelin, 2009).
Moreover, under salt stress conditions, it seems that the accumulation of K+ by mycorrhizal plants (Hanway and Heidel, 1952; Ojala, 1983; Mohammad, 2003; Giri, 2007) helps maintain a high K/Na ratio, thus preventing disruption of many enzymatic processes and inhibition of protein synthesis (Porcel, 2012).
In addition, under high salinity, mycorrhizal plants have been shown to accumulate more proline (osmotic adjustment molecule), betaine and soluble sugars than non-mycorrhizal plants (Jindal, 1993; Porcel et Ruiz-Lozano, 2004; Al-Garni, 2006; Sharifi, 2007). These molecules are known to protect subcellular structures, to maintain enzymatic activities and to limit oxidative damage induced by free radicals in the event of salt stress (Yokoi, 2002). It has also been reported that arbuscular mycorrhizal symbiosis may decrease salt stress in plants by increasing the activity of antioxidant enzymes such as peroxide dismutase, ascorbate-peroxidase and peroxidase activities. These enzymes will allow the degradation of ROS and therefore limit the induction of membrane damage (Alguacil, 2003; He, 2007; Zhong, 2007).
Polluants
AMFs play an important role in the phyto-stabilization of soils polluted by trace and potentially toxic elements (Garg and Chandel, 2010), and they also protect trees from the toxic effects of pollutants and heavy metals (lead, cadmium, nickel, mercury, etc.) (Shetty, 1994). In mycorrhizal plants, certain heavy metals, such as aluminum which binds to the mycelium, retained by the fungal coat only reach the root in a reduced quantity (Brunner and Frey, 2000; Brunner and Brodbeck, 2001). Other work on radioactive cesium has shown that this substance contained in the soil accumulates in the ‘fruiting bodies’ of the hyphae of certain mycorrhizae (Brunner and Brodbeck, 2001; Dupré de Doulois, 2007). On the other hand, several research works have demonstrated the impact of mycorrhizal infection on the process of phyto-restoration of soils contaminated by heavy metals (Salido, 2003; Giasson, 2005).
Arbuscular mycorrhizal fungi (AMF)
The AMF symbiosis is the most widespread and oldest terrestrial symbiosis in the terrestrial ecosystem (Smith and Read, 1997; Harisson, 1997; Stürmer, 1998; Wubet, 2003; Fitter, 2005; Smith and Read, 2008; Guether, 2009 ; Khade and Adholeya, 2009). Indeed, the mycorrhizal symbiosis with vesicles and arbuscules is formed by more than 80% of terrestrial vascular plants (Strullu, 1985; Smith et Gianinazzi-Pearson, 1988; Newsham etal., 1995; Bonfante and Perotto, 1995; Smith et Read, 1997; Fortin, 2008; Smith and Read, 2008; Brundrett, 2009; Garbaye, 2013). Ferns, lycopods, several conifers, monocotyledons, dicots and the majority of flowering plants are all provided with AMF (Fortin, 2008). The arbuscular mycorrhizal association is an obligatory symbiotic association (Ferrol, 2002; Vestberg and cassells, 2009). AMFs belong to the monophyletic phylum (Redecker, 2000; Schwarzott, 2001), Glomeromycota (Schubler, 2001), the order Glomales of the class Zygomycetes (Gerdemann and Trappe, 1974). The most common genera are Glomus, Gigaspora and Acaulospora (Torrey, 1992).
AMFs have co-evolved with plants for at least 460 million years (Simon, 1993), probably allowing the colonization of land masses by vascular plants (Remy, 1994 ; Redecker, 2000; Selosse, 2000; Wang, 2006) through improved plant nutrition.
AMFs are special organizations for several reasons
AMFs are obligate symbionts (Harrier and Watson, 2004). Their cultivation requires a symbiotic association with a host plant (Smith and Read, 2008). The same endomycorrhizal fungus can colonize several plants and the same plant can be infected by several AMF species (Mosse, 1981).
The genetics of these fungi, degree of ploidy, number of chromosomes, segregation of nuclei, existence or not of meiosis, remains little studied (Sanders, 2010). Sexual reproduction has never been observed in these fungi, although the necessary genes appear to be present (Tisserant, 2012; Corradi and Bonfante, 2012).
An important aspect of fungal development is that some species can fuse hyphae between genetically close individuals, a phenomenon called anastomosis. This process allows the exchange of nutrients (Mikkelsen, 2008) but also nuclei (Giovannetti, 1999; Croll, 2009) further complicating the genetic structure/plasticity of these organisms.
Structure of arbuscular mycorrhizal fungi
AMFs develop different specific structures in the rhizospheric soils of plants, these are spores and/or sporocarps containing several spores, vesicles, arbuscules, and extracellular and intracellular mycelium (Ouahmane, 2007).
Spores
The spores are asexual, unicellular structures, usually globoid in shape, thick-walled formed by several layers of different textures, connected to the filamentous networks by a suspensory hypha of various morphology (Gerdemann and Trappe, 1974; Morton, 1988; Giovannetti and Gianinazzi, 1994; Stürmer, 1998; Dalpé, 2004). They contain a very large number of nuclei (polynucleates), for example, in the species Scutellospora castanea, up to 700 have been counted (Hosny, 1998) and in Gigaspora margarita up to 2000 (Bécard et Pfeffer, 1993). Spores can range in size from 30 μm to 130 μm (Koffi, 2009). The relatively large, multinucleate spores are rich in lipid and protein globules. They are found separated or in sporocarps (Redecker and Schüßler, 2013), with a diameter between 22 and 1050 µm (Souza, 2015). AMF spores are grouped in clusters and sporocarps surrounded or not by a peridium (Redecker, 2007), case of the species Redeckera fulva.
Spores are storage and dissemination organs of AMF (Bouchet, 2005).Theygerminate and give rise to mycelial filaments which come into contact with a young root, form an appressorium, penetrate, settle and spread rapidly at the level of the root cortex by differentiating inside these cells from arbuscules and in certain case of vesicles (Souza, 2005) (Figure 15).
Arbuscules
Arbuscules are units at which nutrient exchanges occur between two host plant/fungus partners (Scannerini and Bonfante-Fasolo, 1982; Gianinazzi, 1983; Smith and Read, 1997; Chifflot, 2008 ; Guether, 2009). They result from a series of dichotomous divisions of an intra-root hypha resembling the antlers of a tree, an arbuscule of 2-6 µm (Dexheimer, 1997). It is a lateral branching of fungal hyphae in the cells of the root cortex where the fungus enters and grows inside (Manchanda and Garg, 2007).The terminal branches are short and very tenuous, with a diameter varying from 0.5 µm to 1µm. The host cell membrane invaginates and envelops the fungus, this new compartment provides direct contact between the fungus and the plant. Their lifespan is very short 2 to 15 days (Harley, 1986), 7 to 11 days (Ferrol ., 2002), sometimes one to three weeks (Smith et Read 1997; Harrison, 1999). Once the arbuscule is degraded, the cytoplasm of the cortical cell returns to its original position without influencing cell function. The exact shape of the arbuscules varies according to the genus of the AMF (Smith et Read, 2008) (Figures 8; 9; 10; 11; 112; 13; 14).
Vesicles
Vesicles are thin-walled storage structures, present within or between cortical cells (Harley and Smith, 1983; Smith and Read, 1997; Dodd, 2000). They have thick walls of various shapes, and are formed from the intra-root mycelium (Pawlowska, 1999). They play a role in the storage of reserves, mainly present in the form of lipids and trehalose (Harley and Smith, 1983 ; Bonfante-Fasolo, 1984 ; Fontaine, 2001; Duhoux and Nicole, 2004), and ensure the survival of the fungus. Their size varies between 30 and 250 µm (Declerck, 1998) (Figures 8; 9; 10; 11; 12; 13; 14).
The intra and extra-root mycelial network
Intra- and extra-root mycelial networks are propagation organs that can colonize a plant other than the plant from which they originate. The mycelial network absorbs nutrients from the soil (nitrogen, phosphorus in particular) acting as an extension of the root system of plants in the soil (Newman and Reddell, 1987). The external mycelial hyphae are protected by a very thick and stratified wall (Scannerini and Bonfante-Fasolo, 1982), with cytochemical characteristics different from those of the walls of the internal hyphae (Bonfante-Fasolo et Grippioli, 1982). Along these hyphae are differentiated branched structures resembling arbscules considered as privileged sites of nutrient uptake for the plant (Bago, 1998). These extra-root hyphae promote the aggregation of soil particles thanks to glomalin while improving its aeration (Murulanda, 2003; Porcel, 2003; Rillig and Mummey, 2006; Dodd, 2000) (Figures 8; 11; 13; 14).
Taxonomy of endomycorrhizae
AMFs are coenocytic (hyphae lacking a septa) and multinucleated organisms. They would be heterokaryotic, with haploid nuclei, or homokaryotic, with polyploid nuclei (Kuhn, 2010; Pawlowska and Taylor, 2004; Hijri and Sanders, 2005).
The taxonomy of endomycorrhizae remains always complex, it is based mainly on the morphological characters of the spores which are of great importance. The identification keys that allowed the determination of endomycorrhizae are based on different criteria (Gerdemann and Nicolson, 1963; Morton and Benny, 1990; Giovannetti and Gianinazzi-Pearson, 1994):
• Form of the hypha carrying the terminal spores,
• Presence or absence of the septum, membrane that separates the contents of the spore from the hypha),
• Internal aspect of the spores;
• Color of spores, usually variable, yellow or brown, black or colorless;
• Structure of the spore wall.
However, in the absence of spores, it is difficult to identify the species from its mycelium. To overcome these difficulties, molecular approaches using specific probes have made it possible to support microscopic observations (Moutoglis, 1997; Corradi, 2004; Hijri, 2001; Hijri and Sanders, 2005).
In recent years, many changes have been noted regarding the classification of Glomeromycota (Morton and Msiska, 2009; Schüßler and Walker, 2010; Oehl, 2011a and b). Recent morphological and phylogenetic studies have made it possible to group all arbuscular mycorrhizal species into the Zygomycota phylum and placed in their own Glomeromycota phylum Recent morphological and phylogenetic studies have made it possible to group all arbuscular mycorrhizal species into the Zygomycota phylum and placed in their own Glomeromycota phylum (Gerdemann and Trappe, 1974). The Glomeromycota phylum mentions about 240 species described to date, divided into 4 orders, 11 families and 25 genera (Redecker, 2013).
Molecular taxonomy, based on analyzes of the small subunit of 18S ribosomal RNA, has made it possible to construct the phylogenetic tree of the Glomeromycetes (Krüger, 2012).This technique consists in amplifying by polymerase chain reaction (PCR) regions of nuclear ribosomal DNA (rDNA) which encode the different ribosomal RNAs (rRNA), 5S, 18S, 28S and 5.8S, using universal and fungi-specific nucleotide primers (White, 1990). DNA must be extracted first from a spore (Schwarzott and Schüßler, 2001) or a root sample (Edwards ., 1997). As the majority of the DNA extracted from the colonized roots comes from the plant, the primers used must be very specific for Glomeromycota and the PCR must be carried out under very astringent conditions.
Molecular biology tools have made it possible to characterize new ancestral lines of Glomeromycota, such as Archaeosporaceae and Paraglomaceae (Morton and Redecker 2001; Redecker, 2000a, b). Molecular biology has also shown that the diversity of Glomales sensu Morton and Benny (1990) is much higher than previously found (Sanders, 2002).
Life cycle of AM fungi
The life cycle of AMF is complete only in the presence of a plant partner (Azcόn-Aguilar, 1998; Giovannetti, 2000).
The establishment of the symbiosis between the plant and the AMF takes place via an exchange of molecular signals (Vierheilig and Piché, 2002; Requena, 2007). Recognition between the fungus and the host plant involves root and fungal exudates: flavonoids and strigolactones, chemical substances secreted by the host plant, will stimulate the metabolic activity of the fungus (Akiyama, 2007; Reinhardt, 2007; Stevenin, 2011; Gavériaux, 2012). The morphology of the hyphae changes and adopts an intense branching growth (Buée, 2000). Thus, there is spontaneous germination of a spore followed by the formation of germinal hyphae. In the absence of host recognition, germination can slow down, or even stop, but retain enough carbon resources to be able to repeat this germination. The AMF then releases “Myc” factors into the soil which will lead, in the plant, to the activation of the symbiosis signaling pathway (Delaux, 2013) and thereby more lateral roots are put in place (Olàh, 2005; Genre, 2013), elongate and form, by branching, a pre-symbiotic mycelial network developing in the direction of the root (Stevenin, 2011).
The fungus forms appressoria which are structures for attaching then penetrating cells of the epidermis (penetration can be achieved in 36 hours) (Kendrick, 1992). At this stage, other fungal signals must intervene; they lead to a cytoplasmic rearrangement of the epidermal cells and the formation of a pre-penetration apparatus (PPA) thanks to which the fungus can cross the plant cell (Bago, 1998; Genre, 2005). The hyphae of the fungus will then progress intercellularly to the cells of the root cortex, where they will form highly branched intracellular structures of exchange (arbuscules) and reserve (vesicles).
Extracellular hyphae develop to follow root growth or establish other foci of infection in the root (Bago, 1998). The plasma membrane of the plant cell greatly increases its surface area and invaginates all around. It is at this cellular interface that the exchange of nutrients between partners mainly takes place (Reinhardt, 2007), water and mineral elements, such as phosphorus, which are then exchanged with the plant in return for carbohydrates (Graham, 1997). After differentiation of intra-root structures, the fungus produces spores from its extra-root mycelium (Akiyama, 2007). All these molecular communication mechanisms are still little known, but research is progressing steadily thanks in particular to advances in genomics (Garbaye, 2013).
The diversity of AMFs in Morocco
In Morocco, the study of the diversity of endomycorrhizal fungi was carried out at the level of the rhizosphere of a large number of plant species: olive tree (Chliyeh, 2014; Semane, 2018), Poplar (Talbi., 2014) (Figure 16), oleaster (Sghir, 2013), carob tree (Talbi, 2015 ) (Figure 17), argan tree (Sellal, 2016), date palm (Sghir, 2015), citrus (Artib, 2016), martorn (Hibilik, 2016), Chickpea (El Hazzat, 2018), saffron (El Aymani, 2019), sugarcane (Selmaoui, 2017) (Figure 18). It also concerned various types of soils, case, for example, of coastal dunes (Touati, 2015) and highway embankments (El Hazzat, 2017). Among the species of endomycorrhizal fungi reported, representatives of the genus Glomus are the most dominant (Chliyeh, 2014; Kachkouch, 2014; Semane, 2018; Talbi, 2015; Sghir, 2015; Sghir, 2013; Talbi, 2014; Artib, 2016; Selmaoui, 2017; Bahouq et Douira, 2017; Hibilik, 2016; Hibilik, 2018; Touati, 2015; El Hazzat, 2017; Sellal, 2016; El Aymani, 2019; El Hazzat, 2017; Nounsi, 2015).
Transfer of phosphorus (P) from arbuscular mycorrhizal fungi to the plant
Soils contain large amounts of organic or inorganic P (Sanyal and De Datta, 1991), these quantities are estimated between 200 and 3,000 mg/kg of soil (Harrison, 1997).
Plants adsorb Phosphorus in the form of inorganic orthophosphate with the other cationic constituents of the soil to form CaPO4 complexes with calcium at high pH and FePO4 or AlPO4 complexes with iron (Fe) or aluminum at low pH. As well as in the form of organic molecules such as lecithin (Sanyal and De Datta, 1991; Javot, 2007b; Richardson, 2009; Smith and Smith, 2012). In addition, P is very poorly mobile in soils (Javot, 2007b). When the proportion of phosphorus in the soil is low, plants always find themselves in difficult situations to meet their needs (Richardson, 2009; Smith, 2011). Indeed, P is an essential element for the life of the plant, it enters into the synthesis of many molecules such as adenosine triphosphate (ATP) and phospho-nucleotides: uridine triphosphate (UTP), cytidine triphosphate (CTP) and guanosine triphosphate (GTP), phospholipids, certain enzymes and co-enzymes (Marschner, 1995; Gaude, 2008; Maathuis, 2009). Phosphorus is also stored in the vacuoles in the form of inositol-hexa-phosphate also called phytic acids (phytates) which are excellent chelators of cations such as Ca2+, Mg2+, K+, Fe2+ and Zn2+(Mitsuhashi, 2005). The formation and hydrolysis of pyrophosphate bonds is a central mechanism in the regulation of cellular energy (Maathuis, 2009).
Mycorrhization is a strategy used by the plant to directly take P from the soil, via the extra-root mycelium of the AMF (Karandashov et Bucher, 2005; Smith, 2011). Also plant cells containing mycorrhizal structures contain a higher amount of P than other root cells (Schoknecht and Hattingh, 1976; Weiersbye, 1999). Other work has reported that the amount of phosphorus transferred by AMFs to plants is greater than that of other nutrients (Smith, 2003, 2004; Harrison, 2010). In addition, the mycorrhizal pathway could be essential for the survival of certain plants that do not have root hairs and whose absorption of nutrients would be difficult.
The presence of AMF is essential to explore the soil in search of phosphorus to satisfy the nutritional needs of plants. To access soil P pools inaccessible to plants, AMF would be able to hydrolyze organic P into inorganic P to make it available in the soil to the plant or even transfer it directly to the host plant (Joner, 2000; Koide and Kabir, 2000; Feng, 2003; Shibata and Yano, 2003). Phosphatase activity increases in the rhizosphere in the presence of endomycorrhizal plants (Rubio, 2002). AMFs exhibit strong alkaline and acid phosphatase activities in intra- and extra-root hyphae (Smith and Gianinazzi-Pearson, 1990; Ezawa, 2001; Van Aarle, 2001, 2002; Olsson, 2002).
Indeed, it has been shown, thanks to the use of compartment devices and P labeled 32P or 33P that the extra-root hyphae of the fungus are able to take up and transport P to the roots (Cooper et Tinker, 1978; Jakobsen , 1992; Pearson et Jakobsen, 1993; Cui and Caldwell, 1996; Smith ., 2003, 2004). In addition, it has been noted that even when a supply of P is added to the matrix where the roots develop, the plants still seek to obtain a transfer of this P via the AMF (Smith, 2003, 2004).
The AM fungus can store a greater amount of phosphorus than the roots, allowing a continuous flow of phosphorus into the hypha. Phosphorus can be stored in three forms: soluble orthophosphate, soluble polyphosphate and polyphosphate granules. These correspond to more than 40% of the total phosphorus of the fungus and are stored in the vacuole (Bolan, 1991).
The uptake of P by the extra-root mycelium takes place against a concentration gradient (passive transport). As the uptake process is energy dependent, P enters the cytoplasm via high affinity Pi/H+ symports (Harrison and Van Buuren, 1995; Karandashov and Bucher, 2005; Javot, 2007b). There are three P transporters, GvPT, GiPT and GmosPT, identified in Glomus versiforme, G. intraradices and G. mosseae respectively (Harrison and Van Buuren, 1995; Maldonado-Mendoza, 2001; Benedetto, 2005).
The P is then rapidly condensed into polyphosphate (poly-P) (Ezawa, 2004). These poly-Ps have been shown to account for more than 60% of the total P accumulated in AMFs (Hijikata, 2010). Poly-Ps are polymers made up of 3 to thousands of Ps linked by high-affinity phospho-anhydrate bonds (Kornberg, 1999). In the extra-root mycelium of AMFs, the average length of poly-P reaches 13 to 15 P connected (Rasmussen, 2000; Viereck, 2004). The majority of the poly-P thus formed is then stored in the acid compartments, probably vacuolar, in the extra-root hyphae of the AMF (Viereck, 2004). The poly-P would be very mainly transported in the intra-root hyphae by a system of tubular vacuoles connected between them, while another part of the transport would take place via the cytoplasmic current (Uetake, 2002; Van Aarle and Olsson, 2008). This transfer takes place at the level of the exchange surfaces which can theoretically be located at two levels: at the level of the intercellular hypha and at the level of the arbuscule. The arbuscular organization develops a large exchange surface, so it is supposed to be the privileged place for the flow of phosphorus to the root.
Poly-P length is less in intra-root hyphae compared to extra-root hyphae (Solaiman, 1999; Viereck, 2004; Ohtomo et Saito, 2005). This lower length seems to confirm the active hydrolysis of poly-P in the intra-root hyphae in order to produce orthophosphates that can be released in the apoplasm at the plant/AMF interface (Ezawa, 2001). The exact mechanism of hydrolysis of poly-P groups is not fully understood. However, the intense enzymatic activity of phosphatases near arbuscules compared to other intra-root structures seems to indicate a role of these enzymes in this function (Tisserant, 1993; Ezawa, 1995; Van Aarle, 2005).
Interaction mycorrhizae-bacteria
The interaction between the mycelium of arbuscular mycorrhizal fungi (AMF) and bacteria has been studied by several mechanisms to know the transport of carbon in fungal tissues (Andrade, 1997; Bago, 2002; Trépanier, 2005), change in soil structure (Tisdall and Oades, 1979), competition for available nutrients (Ravnskov, 1999) and physiological changes in root exudates (Söderberg, 2002). Bending (2006) noted that some information regarding the composition of AM fungal exudates, and their availability in soil for the benefit of microbial communities has not been very well studied.
Various studies have reported the influence of bacterial populations present in the soil on the colonization of the root system of plants by AMF (Taktek, 2015). Some soil bacteria colonize the hyphae of dead or living AMFs, they use the exudates released by the living fungal hyphae, while other bacterial species use the hyphae themselves as a substrate (Toljander, 2006). The study by Filion (1999) on the effect of fungal exudates on the growth of some bacterial strains present in the soil showed that these extracts could sometimes have an antagonistic effect, but in most cases stimulatory effects on the growth of microorganisms, suggesting that the products exuded by the mycelium may play an important role in the direct interactions between AMFs and other soil microorganisms.
Some bacteria of the genus Paenibacillus can be intimately associated with the mycelium of Glomus intraradices (Mansfeld-Giese, 2002). Artursson and Jansson (2003) found that Bacillus cereus, isolated from soil, has higher levels of attachment to Glomus dussii hyphae compared to other bacterial strains. Scheublin (2010) reported that the colonization of the hyposphere of two AMFs (Glomus intraradices and Glomus proliferum) is specific to certain groups of bacteria. The analysis of bacterial communities attached or not to the fungal mycelium showed the abundance of a group of bacteria from the Oxalobacteraceae family, intimately attached to the hyphae, thus suggesting the presence of a specific dialogue between these microorganisms (Scheublin, 2010). Indeed, it seems that some bacteria are more specific to a particular type of AMF, which could be due to the secretion of specific exudates by the fungal species (Artursson and Jansson, 2003). Bacillus pabuli has the ability to improve root colonization by arbuscular mycorrhizae (Xavier and Germida, 2003) and can also improve plant growth (Artursson, 2006).
This phenomenon could be linked to the solubilization of rock phosphate by phosphate-solubilizing bacteria (BSP) and the release of P, part of which will be taken up by the AMF and will ensure its development and the other will be transported to the plant by the intermediary of the mycelial network (Taktek, 2015).
In addition, AMFs can influence the diversity and structure of bacterial communities in the rhizosphere (Linderman, 1988; Meyer and Linderman, 1986; Paulitz and Linderman, 1991; Toljander, 2006; Offre, 2007). PSBs (Phosphate Solubilizing Bacteria) have already been proposed as a viable solution to solve the problem of precipitation of soluble superphosphate fertilizers (Khan, 2007; Narula, 2000).
Many genera of PSBs have shown good potential for use as biofertilizers for improving plant nutrition P, as they mobilize P from low inorganic and organic P sources in the soil (Calvo, 2014). Several reports have also highlighted the importance of the beneficial interaction between PSB and AMF in mobilizing phosphorus and improving plant uptake (Calvo, 2014; Sharma, 2013).
CONCLUSION
Through this bibliographic study, we noted the diversity of ectomycorrhizal and endomycorrhizal fungi related to plant species. The important role of these fungi in the functionality of ecosystems has also been noted. In Morocco, studies carried out on endomycorrhizae have shown the importance of inocula based on these fungi in stimulating the growth of plant species and their protection against various pathogens. The use of these fungi in the nursery will make it possible to obtain vigorous plants capable of developing once transferred to different biotopes, with various climatic conditions. Mycorrhization of plants at the nursery level will gain momentum in the coming years and will be widely accepted as a component of an integrated approach to ecosystem management.
Acknowledgements
The Authors would like to acknowledge the support through the R&D Initiative of OCP Foundation, R&D OCP, UM6P, CNRST and MESRSFC.
REFERENCES
Abbott L.K., Robson A.D., Hall I.R. (1983). Introduction of vesicular-arbuscular- mycorrhizal fungi into agricultural soils. Aust. J. Agric. Res., 34: 741-749.
Abbott L.K. (1982). Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean cover. Aust. J. Bot., 30: 485–490.
Abourouh M. (2011). Truffes du désert du Maroc: diversité et modes d’exploitation. 6ème Rencontre de Micosylva, Mértola (ADPM), Portugal, 15-18 Mars 2011.
Abourouh M. (2000). Mycorhizes et mycorhization des principales essences forestières du Maroc. Thèse de Doctorat d’Etat, Université Mohammed V, Fac. Des Sciences, Rabat, Maroc, 175 p.
Abourouh M. (1999). Étude de l’Aptitude ectomycorhizogène des champignons isolés en culture pure. Annales de la Recherche-Forestiere au Maroc, 32: 84-92.
Abourouh M. (1992). Essai de mycorrhyzation en pépinière par les spores de Pisolithus tinctorius. Annales de la Recherche-Forestière au Maroc, 26: 127-138.
Abourouh M. (1991). La distribution au Maroc de Cenococcum geophilum. Annales de la Recherche Forestière au Maroc, 25: 30-40.
Abourouh M. (1987). Cenococcum graniforme (Sow) Ferde. Et Winge, champignon ectomycorhizien de Quercus suberdans la forêt de la Mamora (Maroc occidental). In: Les arbres fixateurs d’azote. L’amélioration biologique de la fertilité du sol. Paris: ORSTOM, 256-261.
Abourouh M. (1983). Essai de mycorhization de Cedrus atlantica en pépinière. Annales de la Recherche Forestière au Maroc, 23:189-328.
Ait Aguil F. (2005). Contribution à l’étude de la biodivérsité de la flore fongique des forêts marocaines: cas des Basidiomycètes du Rif Oriental et du Rif Occidental et des Gastéromycètes de la Mamora. Thèse de Doctorat, Université Ibn Tofail, Faculté des Sciences, Kénitra, Maroc, 154p.
Ait Aguil F., El Houssni A., Ouazzani Touhami A. and Douira A. (2002). Contribution à la connaissance des Gastéromycètes de la forêt de la Mamora. Annales de la Recherche Forestière au Maroc, 35: 77-87.
Akiyama K. (2007). Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Bioscience Biotec. Biochem., 71: 1405-1414.
Al-Garni S.M.S. (2006). Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Journal of Biotechnology, 5: 133-142.
Alguacil M.M., Roldan A., Torres M.P. (2009). Complexity of semiarid Gypsophilous Shrub Communities Mediates the AMF Biodiversity at the Plant Species Level. Microbiol. Ecol., 57: 718- 727.
Alguacil M.M., Hernández J.A., Caravaca F., Portillo B., Roldán A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118: 562-570.
Allen E.B., Allen M.F. (1986). Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytologist, 104: 559–571.
Aouadj R., Es-Sgaouri A., Button B. (2000). Étude de la stabilité et de quelques propriétés de la nitrate réductase du champignon ectomycorhizien Pisolithus tinctorius. Cryptogamie Mycologie, 21: 187–202.
Aouadj R., Es-Sgaouri A., Abourouh M. (1997). Croissance et assimilation des nitrates chez le champignon ectomycorhizien Pisolithus tinctorius. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 17: 209-216.
Andrade G., Mihara K.L., Linderman R.G. and Bethlenfalvay G.J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil, 192: 71-79.
Appelhans M., Weber C. H., Imhof S. (2008). Rutaceae sampled from Germany, Malta, and Mallorca (Spain) is associated with AMF clustering with Glomus hoi Berch & Trappe. Mycorrhiza, 18: 263-268.
Artursson V., Finlay R.D., Jansson J.K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol., 8:1-10.
Artursson V., Jansson J.K. (2003). Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microb., 69: 6208-6215.
Aroca R., Vernieri P., Ruiz-Lozano J.M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59: 2029-2041.
Aroca R., Porcel R., Ruiz-Lozano J.M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses. New Phytologist, 173: 808- 816.
Aroca R., Ferrante A., Vernieri P., Chrispeels M.J. (2006). Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Annals of Botany, 98: 1301-1310.
Artib M., El Gabardi S., Touati J., Rhimini Y., Selmaoui K., Mouria A., Ouazzani Touhami A Benkirane R and Douira A. (2017). Study of Arbuscular Mycorrhizal Fungi Diversity a hyphosphère nd Its Effect on Growth and Development of Citrus aurantium L. Journal of Experimental Agriculture International, 15: 1–12.
Artib M., Chliyeh M., Touati J., Talbi Z., Selmaoui K., Ouazzani Touhami A., Benkirane R., Douira A. (2016). Study of Arbuscular mycorrhizal fungi diversity in the rhizosphere of citrus grown in Morocco. International Journal of Advances in Pharmacy, Biology and Chemistry, 5: 2277-4688.
Azcón-Aguilar C., Bago B., Barea J.M. (1998). Saprophytic growth of arbuscular mycorrhizal fungi. In: Mycorrhiza, Structure, Function, Molecular, Biology and Biotechnology. Varlo A., Hock B. (eds.). Springer-Verlag, Berlin, Heidelberg, 391-408.
Azcón-Aguilar C., Barea J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - An overview of the mechanisms involved. Mycorrhiza, 6: 457-464.
Babana A. H., Antoun H. (2006). Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil, 287: 51– 58.
Bago B., Vierheilig H., Piché Y., Azcón-Aguilar C. (1996). Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New phytologist, 133: 273- 280.
Bago B., Azcón-Aguilar C., Goulet A., Piché Y. (1998). Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorhizal fungi. New Phytologist, 139: 375-388.
Bago B., Pfeffer P. E., Zipfel W., Lammers P., and Shachar-Hill Y. (2002). Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi. Plant and Soil, 244: 1-2.
Bakkali Yakhlef S., Kerdouh B., Mousain D., Ducousso M., Duponnois R., Abourouh M., (2009a). Phylogenetic diversity of Moroccan cork oak woodlands fungi. Biotechnol. Agron. Soc. Environ., 13: 521-528.
Bakkali Yakhlef S., Mousain D., Duponnois R., Ducousso M., Belkouri A., Kerdouh B., Perrineau M. and Abourouh M. (2009b). Molecular phylogeny of Pisolithus species from Moroccan forests woodlands. Symbiosis, 49: 157-162.
Bahouq M., and Douira A. (2017). Diversity of Arbuscular Mycorrhizal Fungi In The Strawberry Rhizosphere In Morocco. International Journal of Recent Scientific Research, 8: 17037-17044.
Barea J. M., Werner D., Azcón-Guilar C., & Azcón R. (2005). Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. In: Nitrogen fixation in agriculture, forestry, ecology, and the environment, 199-222.
Barea J.M., and Honrubia M. (1993). Micorrizas y revegetaciôn. Ecosistemas, 4: 46-47.
Bécard G., and Pfeiffer P.E. (1993). Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma, 174: 62-68.
Belkouri A. (2011). Contribution à l’étude de la biodiversité des champignons éctomycorhiziens Pisolithus spp. au Maroc. Thèse de Doctorat d’état, Université Hassan II Ain Choc, Faculté des Sciences, Casablanca, Maroc, 174p.
Belkouri A., Bakkali Yakhlef S., Es-sgaouri A., Aouadj R. et Abourouh M. (2009). Tolérance au stress hydrique et à la salinité et caractérisation moléculaire des isolats de Pisolithus spp. Récoltés sous Eucalyptus au Maroc. Annales de la Recherche Forestière, 40: 3-16.
Belkouri A., Es-sgaouri A., Aouadj R., Dahchour A. (2009). Action de certains pesticides sur la croissance du champignon ectomycorhizien Pisolithus tinctorius. Biomatec Echo, 3: 26-30.
Benedetto A., Magurno F., Bonfante P., Lanfranco L. (2005). Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 15: 620-627.
Bending G.D., Aspry T.J., Whipps J.M. (2006). Significance of microbial interactions in the mycorrhizosphere. Adv. Appl. Microbiol., 60:97-132
Bentivenga S., Bever I.D., Morton J.B. (1997). Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae). American Journal of Botany, 84: 1211-1216.
Bertault R. (1978a). Russules du Maroc. Bulletin de la Société Mycologique de France, T 94: 5-31.
Bertault R. (1978b). Lactaires du Maroc. Bulletin de la Société Mycologique de France, T 94: 273-288.
Bertault R. (1970). Comptes rendus mensuels des Séances de la Société des Sciences Naturelles et Physiques du Maroc, T. 36, Presses des éditions Marocaines et Internationales, Tanger, Maroc, 78-114.
Bethlenfalvay G.J., Cantrell I.C., Mihara K.L., Schreiner R.P. (1999). Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biology and Fertility of Soils, 28: 356-363.
Bolan N.S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134: 189-207.
Bonfante P., Balestrini R., Genre A., Lanfranco L. (2009). Establishment and Functioning of Arbuscular Mycorrhizas. The Mycota VH. Deising (Ed.) 2nd Edition. Plant Relationships, 259- 274.
Bonfante P., Perotto S. (1995). Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist, 130: 3 – 21.
Bonfante-Fasolo P., Grippiolo R. (1984). Cytochemical and biochemical observations of the cell wall of the spore of Glomus epigaeum. Protoplasma, 123: 140-151.
Bonfante-Fasolo P., and Grippiolo R. (1982). Ultrastructural and cytochemical changes in the wall of a vesicular-arbuscular mycorrhizal fungus during symbiosis, Can. J. Bot., 60: 2303–2312.
Bouchet P.H., Guignard., J. I. et Villard J. (2005). Les champignons, Mycologie fondamental et appliquée. 2ème éd. Paris: Masson. p 194.
Bouziani N., Bouakka M., Belabed A., El Houssine T. (2009). Amélioration du taux de germination des graines de l’hélianthème (Helianthemum ledifolium), plante hôte des truffes du désert (Terfez) au Maroc Oriental. Reviews in Biologyand Biotechnology, BioAlliance Canada,Morocco. http://www.bioacm.ca
Boullard B. (1982). Brève réponse à une question: que recouvre la notion de mycorhize. In: Les mycorhizes, partie intégrante de la plante: Biologie et perspectives d’utilisation. 13ème Coll. INRA, Dijon, France. 15-21.
Brundrett M.C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant & Soil, 320:37–77.
Brundrett M.C. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews, 79: 473-495.
Brundrett M.C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154: 275-304.
Brundrett M., Bougher N., Dell B., Grove T., Malajczuk N. (1996). Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32. Canberra, Australia: Australian Centre for International Agricultural Research. 380.
Brunner I., Frey B. (2000). Detection and location of aluminium and heavy mitals in ectomycorrhizal Norway spruce seedlings. Environnemental pollution and Systematics, 10: 13-27.
Brunner I., Brodbeck S. (2001). Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources. Environnemental Pollution, 114: 223-233.
Bruns T. D., Shefferson R. P. (2004). Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can. J. Bot., 82: 1122–1132.
Bucher M. (2007). Functional biology of plant, Phosphate uptake at root and mycorrhiza interfaces. New Phytol., 173: 11-26.
Buée M., Rossignol M., Jauneau A., Ranjeva R., Becard G. (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Inter., 13: 693 – 698.
Burgess T., Dell B., Malajczuk N. (1994). Variations in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytologist, 127: 731-739.
Calvo P., Nelson L., Kloepper, J.W., (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383: 3-41.
Cantrell I.C., Linderman R.G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233: 269-281.
Cardoso I. M., Boddington C., Janssen B. H., Oenema O., Kuyper T.W. (2006). Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize. Communications in soil science and plant analysis, 37: 1-15.
Cardoso I.M., Kuyper T.W. (2006). Mycorrhizas and tropical soil fertility. Agri. Ecosy. Envir., 116: 72-84.
Caris C., Hördt W., Hawkins H-J., Römheld V., George E. (1998). Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8: 35-39.
Chandanie W.A., Kubota M., Hyakumachi M. (2006). Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil, 286: 209-217.
ChenY. L., Kang L. H., Malajczuk N., Dell B. (2006b). Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globules, E. urophylla, Pinus elliottii and P. radiata. Mycorrhiza, 16: 251-259.
Chifflot V. (2008). Étude moléculaire des CMA dans le système agri sylvicole. Mémoire, Université Laval. Québec. 63p.
Chliyeh M., Ouazzani Touhami A., Filali-Maltouf A., El Modafar C., MoukhliA., Oukabli A., Benkirane R., Douira A.(2014). Effect of a composite endomycorrhizal inoculum on the growth of olive trees under nurseries conditions in Morocco. Int. J. Pure App. Biosci., 2: 1-14.
Cho K., Toler H., Lee J., Ownley B., Stutz J. C., Moore J. L., Augé R. M. (2006). Mycorrhizal symbioses and response of sorghum plants to combined drought and salinity stresses. J. Plant Physiol., 163: 517-528.
Consiglio G. (2009). Revisione del genere Cortinarius. Compléments à la flore des Champignons supérieurs du Maroc de G. Malençon et R. Bertault, p. 318-338.
Cooper K.M., Tinker P.B. (1978). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytologist, 81: 43-52.
Cordier C., Pozo M.J., Barea J.M., Gianinazzi S., Gianinazzi-Pearson V. (1998). Cell defense responses associated with localized and systemic resistance to Phytophtora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions, 11: 1017-1028.
Corradi N., Bonfante P. (2012). The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS pathogens, 8: e1002600.
Corradi N., Hijri M., Fumagalli L., Sanders I.R. (2004). Arbuscular mycorhizal fungi (Glomeromycota) harbour ancient tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genetics and Biolog., 41: 1037-1045.
Croll Daniel., Giovannetti M., Koch A.M., Sbrana C., Ehinger M., Lammers P.J., Sanders I.R. (2009). Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. The New phytologist, 181: 924–37.
Cui M., Caldwell M.M. (1996). Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytologist, 133: 461-467.
Dalpé Y. (2006). Mycorhizes et bénéfices marginaux. Québec Vert, 65: 8-9.
Dalpé Y. (2004). Mycorrhizal fungi biodiversity in Canadian soils. Can. J. Soil. Sci., 83: 321-330.
Dalpé Y. (2001). In vitro monoxenic culture of arbuscular mycorrhizal fungi: a major tool for taxonomical studies. In: Proc 3rd Natl. Symp. Mycorrhizal Symbioses, Guanajuato, Mexico, 321- 325.
Danneberg G., Latus C., Zimmer W., Hundeshagen B., Schneider-Poetsch H.j., Bothe H. (1992). Influence of vesicular arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol., 141: 33–39.
Davies F.T., Potter J.R., Linderman R.G. (1992). Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol., 139: 289–294
De La Noval B., Perez E., Martinez B., Leon O., Martinez-Gallardo N., Delano-Frier J. (2007). Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza, 17: 449-460.
Declerck S., Strullu D. G., Plenchette C. (1998). Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 90: 579–585
Delaux P.M., Bécard G., Combier J.P. (2013). NSP1 is a component of the Myc signaling pathway. New Phytologist, 199: 59-65.
Dell B., Malajczuk N., Bougher N.L., Thompson G. (1994). Development and function of Pisolithus and Scleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza, 5: 129-138.
Dexheimer J. (1997). Étude structurale et fonctionnelle des interfaces entre le champignon et la plante- hôte. Rev. For. Fr., 43- 56.
Dexheimer J., Gérard J. (1993). Application de quelques techniques cytochimiques à l’étude des interfaces des ectendomycorhizes de Monotrope (Monotropa hypopitys L.). Acta Botanica Gallica, 140: 459-472.
Dianda M. (1991). Comparaison des effets de champignons V.A. introduits et indigènes associés ou non à Bradtrhizobium, sur la fixation d’azote et la croissance d’Acacia albida. Dans: Physiologie des arbres et arbustes en zones arides et semi-arides. Groupe d’Etude de l’Arbre, John Libbey Eurotext (Ed.), Paris, France. 263-269.
Dickson S., Smith F. A., Smith S. E. (2007). Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next. Mycorrhiza, 17:375–393.
Dodd J. C. (2000). The role of arbuscular mycorrhizal fungi in agro and natural ecosystems. Outlook on Agricul., 29: 63-70.
Dos Santos V. L., Muchoveg, R. M., Borges A. C., Neves J. C. L., Kasuya M. C. M. (2002).Vesicular-arbuscular/ectomycorrhiza succession in seedlings of Eucalyptus spp. Brazilian Journal of Microbiology, 32: 81-86.
Duhoux E., Nicole M. (2004). Biologie végétale: Associations et interactions chez les plantes. Dunod, Paris, France, 166 p.
Duponnois R., Founoune H., Masse D., Pontanier R. (2005). Inoculation of Acacia holosericea with ecto-mycorrhizal fungi in a semi-arid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. Forest Ecology and Management, 207: 351-362.
Duponnois R., Bâ A.M. (1999). Growth stimulation of Acacia mangium Willd by Pisolithus sp. in some senegalese soils. Forest Ecology and Management, 119: 209-215.
Dupré de Doulois H. (2007). Role of arbuscular mycorrhizal fungi on the accumulation of radiocaesium by plants. Thèse de doctorat, Univ. Catholique de Louvain la-Neuve. 292 p.
Edwards S.G., Fitter A.H. and Young J.P.W. (1997). Quantification of an arbuscular mycorrhizal fungus, Glomus mosseae within plant root by competitive polymerase chain reaction. Mycological Research, 101: 1440-1444.
Egger K.N., and Sigler L. (1993). Relatedness of the ericoid endo-phytes Scytalidium vacciniian and Hymenoscyphus ericaein ferred from analysis of ribosomal DNA. Mycologia, 85: 219–230.
EL Aymani I., EL Gabardi S., Artib M., Chliyeh M., Selmaoui K., Ouazzani Touhami A., Benkirane R. and Douira A. (2019). Effect of the Number of Years of Soil Exploitation by Saffron Cultivation in Morocco on the Diversity of Endomycorrhizal Fungi. Acta Phytopathologica et Entomologica Hungarica, 54: 9-24.
El-Assfouri A., Ouazzani-Touhami A., and Douira A. (2006a). Inventaire des champignons comestibles de la forêt de la Mamora (Maroc). Bulletin de l’Association Entrevalaise de Mycologie et de Botanique Appliquée, 46: 5-9.
El-Assfouri A., Ouazzani-Touhami A., and Douira A. (2006b). Etudes de quelques Russules de la forêt de la Mamora. Bull. Soc. Mycol. Strasbourg, 95: 10-16.
El Hazzat N., Artib M., Touati J., Chliyeh M., Ouazzani Touhami A., Benkirane R and Douira A. (2018). Diversity of endomycorrhizal fungi in the rhizosphere of chickpea in Morocco. Acta Phytopathologica and Entomologica Hungarica, 53: 181-193.
El Hazzat N., Artib M., El Gabardi S., Touati J., Chliyeh M., Ouazzani Touhami A., Benkirane R and Douira A. (2017). Study of the diversity of arbuscular mycorrhizal fungi in the highway slopes of Taza region (North-East of Morocco). Annual Research and Review in Biology, 17: 1–10.
Egerton-Warburton L., Allen M. F. (2001). Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza, 11: 283-290.
Evelin H., Kapoor R., Giri B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104: 1263-1280.
Ezawa T., Cavagnaro T.R, Smith S.E., Smith F.A., Ohtomo R. (2004). Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist, 161: 387-392.
Ezawa T., Smith S.E., Smith F.A. (2001). Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 149: 555-563.
Ezawa T., Saito M., Yoshida T. (1995). Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant and Soil, 176: 57-63.
Faceli K., Sakata T.C., de Souto M.C.P., de Carvalho A. (2010). Partitions selection strategy for set of clustering solutions. Neurocomputing, 73: 2809-2819.
Feddermann N., Muni R.R.D., Zeier T., Stuurman J., Ercolin F., Schorderet M., Reinhardt D. (2010). The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. The Plant Journal, 64: 470–81.
Feng G., Song Y.C., Li X.L., Christie P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22: 139-148.
Feng G., Zhang X., Li X., Tian C., Tang C., Rengel Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185-190.
Ferrol N., Barea J.M., Azcon–Aguilar C. (2002). Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant and Soil, 244: 231–237.
Ferrol N., Pozo M.J., Antelo M., Azcón-Aguilar C. (2002). Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. J. Exp. Bot., 53: 1638–1687.
Filion M., St-Arnaud M., Fortin J.A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol., 141:525-533.
Fitter A.H. (2005). Darkness visible: reflections on underground ecology. Journal of Ecology, 93: 231-243.
Finlay R. (2004). Mycorrhizal fungi and their multifunctional roles. Mycologist, 18: 91-96.
Fitter A.H. (1991). Implication for functioning under natural conditions. Experientia, 47: 350-355.
Founoune H., Duponnois R., Bâ A.M. and El Bouami F. (2000). Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Annals of Forest Sciences, 59: 93-98.
Fontaine J., Grandmougin-Ferjani A., Hartmann M.A., Sancholle M. (2001a). Sterol 592 biosynthesis by arbuscular mycorrhizal fungus Glomus intraradices. Lipids, 36: 1357-1363.
Fortin J.A., Plenchette C., Piché Y. (2008). Les mycorhizes. La nouvelle révolution verte. MultiMonde Quae. (Eds.), Québec. 131 p.
Franck B. (1885). Über die auf Wurzelymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte derDeutschen Botanischen Gessellschaft, 3: 128-145.
Fritz M., Jakobsen I., Lyngkjaer M.F., Thordal-Christensen H., Pons-Kühnemann J. (2006). Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza, 16: 413-419.
Gaba-chahboub H., Lamhamedi S.M., Abrous Belbachir O. (2016). Effet de l’inoculation ectomycorhizienne en pépinière sur la croissance et la nutrition des plants du cèdre de l’Atlas en Algérie. Bois et forêts des tropiques, 330: 57–68.
Garbaye. (2013). La symbiose mycorhizienne: une association entre les plantes et les champignons. Paris, Quae, 256 p.
Garg N. and Chandel S. (2010). Arbuscular mycorrhizal networks: process and functions. A review. Agron. Sustain. Dev., 30: 581–599.
Gaude N., Nakamura Y., Scheible W.R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal, 56: 28-39.
Gavériaux J.P. (2012). Les glomeromycota. Bull. Soc. Mycol. Nord Fr., 92:01-17.
Genre A., Chabaud M., Balzergue C., Puech-Pages V., Novero M., Rey T., Fournier J., Rochange S., Bécard G., Bonfante P., Barker D.G .(2013). Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol., 198: 179-189.
Genre A., Chabaud M., Timmers T., Bonfante P., Barker D.G. (2005). Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell, 17:3489–3499.
Gerdemann J.W. and Trappe J.M. (1974). The Endogonaceae in the Pacific Northwest. Mycologia memoir n°5, The Mycological Society of America. 76 p.
Gerdemann J.W., Nicolson T.H. (1963). Spores of endomycorrhizal endo- gone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc., 46: 235–244.
Gianinazzi-Pearson V., Lemoine M-C., Arnould C., Gollotte A., Morton J.B. (1994). Localization of [β (1 --> 3) glucans in spore and hyphal walls of fungi in the Glomales. Mycologia, 86 : 478-485.
Gianinazzi-Pearson V., Gianinazzi S. (1983). The physiology of vesicular-arbuscular mycorrhizal roots. Plant and Soil, 71: 197-209.
Giasson P. (2005). Utilisation de champignons mycorhiziens dans le processus de phytoretauration de sols contaminés aux métaux lourds. Thèse de Doctorat en Ressources Minérales. Université du Québec à Montréal, Canada, 165 p.
Giovannetti M., Sbrana C., Logi C. (2000). Microchambers and video-enhanced light microscopy for monitoring cellular events in living hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 226: 153–159.
Giovannetti M., Azzolini D., Citernesi A.S. (1999). Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Applied and environmental microbiology, 65: 5571–5.
Giovannetti M., and Gianinazzi-Pearson V. (1994). Biodiversity in arbuscular mycorrhizal fungi. , 98: 705-715.
Giri B., Kapoor R., Mukerji K.G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54: 753-760.
Gobat J.M., Aragno M., Matthey W. (2003). Le sol vivant, 2e Edition. Presses Polytechniques Universitaires Romandes. Lausanne. 568 p.
Graham J., and Lloyd A. B. (1978). An improved indicator plant method for the detection of Pseudomonas solanacearum race 3 in soil. Plant disease Rep., 62: 35-37.
Guether M., Balestrini R., Hannah M.A., Udvardi M.K., Bonflote P. (2009). Genome-wide reprogramming of regulatory networks, transport cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol., 182: 200-212.
Haimed M. (2007). Biodiversité fongique du Maroc: Etude des champignons Basidiomycètes du Plateau Central et des Jardins Exotiques. Thèse de Doctorat, Université Ibn Tofaïl, Faculté des Sciences, Kénitra, Maroc, 278p.
Hamel C. (2004). Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can. J. Soil Sci., 84 :383-395.
Hamidi O., Talbi Z., Chliyeh M., Ouazzani Touhami A., Selmaoui K., Benkirane R and Douira A. (2017). Effect of Endomycorrhizal Inoculation on the Young Cork Oak Plants (Quercus suber) Growth. Annual Research & Review in Biology, 13: 1–11.
Hanway J.J., Heidel H. (1952). Soil analysis methods as used in Iowa State College soil testing laboratory. Iowa Agricultural News,57: 1-31.
Harley J.L. (1986). Mycorrhizal studies: past and future. In: Physiological and genetical aspects of mycorrhizae. 1st SEM. On mycorrhizae. Gianinazzi-Pearson V., Gianinazzi S. (Eds.), Paris, France, 25-35.
Harley J.L. (1984). The mycorrhizal associations. Dans: Linskens H.F., Heslop-HarriRon J. (eds) Cellular interactions. Springer-Verlag, Germany. 148-186.
Harley J. L., Smith S. E. (1983). Mycorrhizal Symbiosis. Academic Press, London,483.
Harrier L.A., Watson C.A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci., 60: 149–157.
Harrison M.J., Pumplin N., Breuillig F.J., Noar R.D., Park H-J. (2010). Phosphate transporters in arbuscular mycorrhizal symbiosis. Dans: Koltai H., Kapulnik Y. (eds) Arbuscular mycorrhizas: Physiology and Function 2nd edition. Springer, 117-136.
Harrison M.J., Dewbre Gary R., Liu J. (2002). A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. The Plant cell, 14: 2413–2429.
Harrison M.J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Plant Physiol., 50: 361–89.
Harrison M.J., Van Buuren M.L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378: 626-629.
Harrison M.J. (1997). The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci., 2: 54-60.
Hausse B., Fester T. (2005). Molecular and cell biology of arbuscular, mycorrhizal symbiosis. Planta, 221: 184-196.
Hawkins H-J., Johansen A., George E. (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226: 275-285.
He Z.Q., He C.X., Zhang Z.B., Zou Z.R., Wang H.S. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59: 128-133.
Helgason T. and Fitter A. (2005). The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist, 19: 96-101.
Hibbett D.S., Binder M., Bischoff J. (2007). A higher-level phylogenetic classification of the Fungi. Mycol. Res., 111: 509–547.
Hibbett D.S., Gilbert L-B., Donoghue M.J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407: 506–508.
Hibilik N., Selmaoui K., Msairi S., Touati J., Chliyeh M., Mouria A., Douira A. (2018). Study of Arbuscular Mycorrhizal Fungi Diversity and Its Effect on Growth and Development of Leek Plants (Allium porrum L). Annual Research & Review in Biology, 24: 1–14.
Hibilik N., Selmaoui K., Touati J., Chliyeh M., Ouazzani Touhami A., Benkirane R., and Douira Allal. (2016). Mycorrhizal status of Eryngium maritimum in the mobile dunes of Mehdia (Northwest of Morocco). Int. J. Pure App. Biosci., 4: 35-44.
Hijikata N., Murase M., Tani C., Ohtomo R., Osaki M., Ezawa T. (2010). Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytologist., 186: 285- 289.
Hijri M., Sanders I.R. (2005). Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature, 433: 160-163.
Hijri M., Kuhn G., Sanders I.R. (2001). Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature, 414: 745-748.
Hodge A., Helgason T. and Fitter A. H. (2010). Mini-review: Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3: 267-273.
Hodge A., Campbell C.D., Fitter A.H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413: 297-299.
Hopkins W.G. (2003). Physiologie végétale. Deuxième édition, Bruxelles, De Boeck Université, 352 p.
Hosny M., Gianinazzi-Pearson V. and Dulieu H. (1998). Nuclear contents of 11 fungal species in Glomales. Genome, 41: 422-428.
Houngnandan P., Sanginga N., Woomer P., Vanlauwe B., Van Cleemput O. (2000). Response of Mucuna pruriens to symbiotic nitrogen fixation by rhizobia following inoculation in farmers’ field in the derived savanna of Benin. Biol. Fertil. Soils, 30: 558-565.
Viereck N., Hansen P.E., Jakobsen I. (2004). Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytologist, 162: 783-794.
Issac S. (1992). Fungal-plant interactions. Chapman and Hall (Ed.), Londres. 418 p.
Jakobsen I., Abbott L.K., Robson A.D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.2. Hyphal transport of 32P over defined distances. New Phytologist, 120: 509-516.
Javot H., Pumplin N., Harrison M.J. (2007b.) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell and Environment, 30: 310-322.
Jindal V., Atwal A., Sekhon B.S., Singh R. (1993). Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiology and Biochemistry, 31: 475-481.
Johansson J.F., Paul L.R., Finlay R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol., 48: 1–12.
Johansson M. (2001). Fungal association of Danish calluna vulgaris roots with special reference to ercoid mycorhiza. Plant and soil, 231: 225-232.
Johansen A., Finlay R.D, Olsson P.A. (1996). Nitrogen metabolism of external hyphae of the arbuscular mycorhizal fungus Glomus intraradices. New Phytologist, 133: 705-712.
Joner E.J., Johansen A., Loibner A.P., De La Cruz M.A., Szolar O.H.J., Portal J.M., Leyval C. (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science and Technology, 35: 2773-2777.
Jung S.C., García-Andrade J., Verhage A., Fernández I., García J.M., Azcón-Aguilar C., Pozo M.J. (2009). Arbuscular mycorrhiza confers systemic resistance against Botrytis cinerea in tomato through priming of JA-dependent defense responses. In Induced resistance: chances and limits, IOBC/wprs Bulletin, Working Group “Induced resistance in plants against insects and diseases.” Proceedings of the meeting at Granada (Spain) (pp. 8-16).
Khan M.S., Zaidi A., Wani P.A. (2007). Role of phosphate-solubilizing microorganism in sustainable agriculture- A review. Agronomy for Sustainable Development, 27: 29-43.
Kachkouch W., Touati J., Ouazzani Touhami A., Filali-Maltouf A., El Modafar C., Moukhli A., Oukabli A., Benkirane R., and Douira A. (2014). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Olea europaea in three regions of Morocco (Tafilalt, Zagora and Taounate). Int. J. Pure App. Biosci., 2: 178–195.
Karandashov V., Bucher M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10: 22- 29.
Khabar L. (1992). L’asque de Terfezia leonis Tull.(Discomycètes, Tubérales). Cryptogamie, Mycol., 15: 187-206.
Khabar L. (2002). Etudes pluridisciplinaires des truffes du Maroc et perspectives pour l’amélioration de production des «Terfess» de la forêt de la Mamora. Doctorat d’Etat esSciences, Université Mohamed V, Faculté des Sciences, Maroc, 111p.
Khabar L., Najim L., Janex-Favre M.C., Paraguey-Leduc A. (2001). Contribution à l’étude de la Flore mycologique du Maroc: Les Truffes marocaines (Discomycètes). Bull. Soc. Mycol. Fr., 117: 213-229.
Kendrick B. (1992). Mycorrhizae: mutualistic plant-fungus symbioses. In: The fifth Kingdom. Focus Information Group Inc., Newburyport, Massachussets, USA. 262-286.
Kernaghan G. (2005). Mycorrhizal diversity: cause and effect. Pedobiol., 49: 511-520.
Khade S., W., Adholeya A. (2009). Arbuscular Mycorrhizal Association in Plant Growing on Metal-Contaminated Soils Adjoining Kanpur Tanneries, Uttar Pradesh, India. Water Air Soil Pollu., 202: 45-56.
Khaosaad T., Garcia-Garrido J.M., Steinkellner S., Vierheilig H. (2007). Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry, 39: 727-734.
Koffi M.C., de la Providencia I.E., Elsen A., Declerck S. (2009). Development of an in vitro culture system adapted to banana mycorrhization. African Journal of Biotechnology. 8: 2750-2756.
Koide R.T., Kabir Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. Biology and Fertility of Soils, 26: 331-335.
Kornberg A., Rao N.N., Ault-Riche D. (1999). Inorganic polyphosphate: a molecule of many functions. Annual Review of Biochemistry, 68: 89-125.
Kuhn H., Küster H., Requena N. (2010). Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytologist, 185: 716-733.
Krüger M., Krüger C., Walker C., Stockinger H., Schüssler A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New phytologist, 193: 970–84.
Laiho O. (1965). Further studies on the ectendotrophic mycorrhiza. Acta Forestalia Fennica, 79: 1-34.
Lambers H., Raven J.A., Shaver G.R., Smith S.E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23: 95-103.
Lange N.R., Vlek P.L.G. (2000). Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal fungi. Soil Sci. Soc. Amer. J., 64: 949-955.
Larouz B., Ouazzani Touhami A., Douira A. (2005). Etude des Pézizales (Ascomycète à ascocarpes) du Moyen Atlas (Maroc). https://www.smhv.net/file/si2132064/download/ascomycete_du_maroc-fi31945256.pdf
Laurent P. (1995). Contribution à l’étude des protéines régulées par la symbiose chez l’ectomycorhize d’Eucalyptus -Pisolithus. Caractérisation de mannoprotéines pariétales chez le basidiomycète Pisolithus tinctorius. Thèse, University Henri Poincaré - Nancy I, Nancy.
Le Tacon F. (1985). Les mycorhizes: une coopération entre plantes et champignons. La Recherche, 16: 624-632.
Lee C.S., Lee Y.J., Jeun Y.C. (2005). Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathology Journal, 21: 237-243.
Linderman R.G. (1988). Mycorrhizal interactions with the rhizosphere microflora-the mycorrhizoshere effect. Phytopathology, 78: 366-371.
Li X.L., George E., Marschner H. (1991). Phosphorus depletion and pH decrease at the root- soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol., 119: 307-304.
Liu A., Hamel C., Hamilton R.I., Ma B.L., Smith D.L. (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9: 331-336.
Liu A., Hamel C., Elmi A., Costa C., Ma B., Smith D.L. (2002). Concentrations of K, Ca and Mg in maize colonised by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci., 82: 271-278.
Liu J., Maldonado-Mendoza I., Lopez-Meyer M., Cheung F., Town C.D., Harrison M.J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal, 50: 529-544.
López-Pedrosa A., González-guerrero M., Valderas A., Azcón-Aguilar C., Ferrol N. (2006). GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology, 43: 102-110.
Maathuis F.J.M. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12: 250-258.
Maldonado-Mendoza I.E., Dewbre G.R., Harrison M.J. (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions, 14: 1140-1148.
Malloch D.W., Pirozynsklt K.A., Raven P. H. (1980). Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (A Review). Proceedings of the National Academy of Sciences, 77: 2113-2118
Malençon G., Bertault R. (1975). Flore des champignons supérieurs du Maroc, Tome II. Faculté des Sciences de Rabat, Maroc, 539 p
Malençon G., Bertault R. (1970). Champignons des subéraies de la Méséta. Troisième liste. Comptes Rendus des Sciences Naturelles et Physique, Maroc, 50: 57.
Malençon G., Bertault R. (1970). Flore des champignons supérieurs du Maroc, Tome I. Faculté des Sciences de Rabat, Maroc, 601 p.
Manchanda G., Garg N. (2007). Endomycorrhizal and rhizobial symbiosis: How much do they share. J. Plant Interact, 2: 79–88.
Mansfeld-Giese K., Larsen J., Bødker L. (2002). Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol., 41:133-140.
Marschner H. (1995). Mineral Nutrition in Higher Plants. Academic Press, London, RU.
Martin F., Perotto S., Bonfante P. (2007). Mycorrhizal fungi: a fungal community at the interface between soil and roots. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, p. 201-136.
Marulanda A., Azcón R., Ruiz-Lozano J.M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol. Plant., 119: 526– 533.
Matheny P.B., Wang Z., Binder M. (2007). Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol., 43:430–45.
Matsuda Y., Noguchi Y., Ito S. (2009). Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. J. For. Res., 14: 335–341.
Meddich A., Oihabi A., Abbas Y., Bizid E. (2000). Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie, 20: 283-295.
Meyer J.R., Linderman R.G. (1986). Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry, 18: 191-196.
Mikkelsen B.L., Rosendahl S., Jakobsen I. (2008). Underground resource allocation between individual networks of mycorrhizal fungi. New phytologist, 180: 890–8.
Mosse, B. (1973). Advances in the study of Vesicular-Arbuscular Mycorrhiza. Annual Revue of Phytopathology, 11: 171-1 96.
Mikola P. (1965). Studies on the ectendotrophic mycorrhiza of pine. Acta Forestalia Fennica, 79: 1–56.
Miller R.M., Reinhardt D.R., Jastrow J.D. (1995). External hyphal prodcution of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103: 17-23.
Mitsuhashi N., Ohnishi M., Sekiguchi Y., Kwon Y.U., Chang Y.T., Chung S.K., Inoue Y., Reid R.J., Yagisawa H., Mimura T. (2005). Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations. Plant Physiology, 138: 1607-1614.
Mohammad M.J., Malkawi H.I., Shibli R. (2003). Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of Plant Nutrition, 26: 125-137.
Moller K., Kristensen K., Yohalem D., Larsen J. (2009). Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biological Control, 49: 120-125.
Morton J.B., Msiska Z. (2009). Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza, 20: 483-496.
Morton J.B., Redecker D. (2001). Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, 93:181-195.
Morton J.B., Benny G.L. (1990). Revised classification of arbuscular mycorrhizal fungi (Zygonycetes): A New order, Glomales, Two New busorders, Glomineae and Gigasporineae, with an emendation of Glomaceae. Mycotaxon, 37: 471-491.
Morton J.B. (1988). Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon, 32: 267-324.
Moser M., Haselwandter K.(1983). Ecophysiology of mycorrhizal symbiosis, in: Encyclopedia of Plant Physiology, New Series, vol. 12, pp. 392-421. Eds O. L. Lange. P. S. Nobel, C. B. Osmond and H. Ziegler. Springer, Berlin-Heidelberg-NewYork.
Mosse B. (1981). Vesicular-arbuscular mycorrhiza research for tropical agriculture. Research Bulletin, 194: 20-77.
Mosse B. (1973). Advances in the study of Vesicular-Arbuscular Mycorrhiza. Annual Revue of Phytopathology, 11: 171-196.
Moutoglis P. (1997). Genetical aspects of vesicular Mycorrhizal fungi. Thèse, Université de Montréal, Canada, 245 p.
Mousain D., Falconnet G., Gruez G., Chevalier G., Tillard P., Bousquet N., Plassard C., Cleyet Marel J.C.(1988). Controlled ectomycorrhizal development of Mediterranean forest seedlings in the nursery. First results and prospects. In: Mycorrhizae in the next decade. Practical Applications and Research Priorities. Proc. 7th North American Cont. on Mycorrhizae, Gainesville (Fl., USA), 3-8 May 1987, D.M. Sylvia eta/. (eds.). I.F.A.S., Univ. Florida, Gainesville (USA). p. 129.
Münzenberger B., Kottke I., Oberwinkler F. (1992). Ultrastructural investigations of Arbutus unedo-Laccaria amethystea mycorrhiza synthetized in vitro. Trees - Structure and Function, 7: 40-47.
Muthukumar T., Prakash S. (2009). Arbuscular mycorrhizal morphology in crops and associated weeds in tropical agro-ecosystems. Mycoscience, 50:233–239.
Nakas J.P., Hagedorn C. (1990). Biotechnology of plant-microbe interactions. McGraw-Hill, USA.
Narula N., Kumar V., Behl R.K., Deubel A., Granse A., Merbach W. (2000). Effect of P solubilizing Azobacter chroococcum on NPK uptake in P responsive wheat genotypes 54 grown under green house conditions. Journal of Plant Nutrition and Soil Science, 163: 93-398.
Nelsen C.E. (1987). The water relations of vesicular-arbuscular mycorrhizal systems, in: Safir G.R. (Ed.), Ecophysiology ofVA mycorrhizal plants, CRC Press, Boca Raton, Fla. 71–79.
Neville P. and Poumart S. (2009). Révision des Amaniteae genre Amanita et Limacella. Compléments à la flore des Champignons supérieus du Maroc de G. Malençon et R. Bertault. Ed. Confédération Européenne de Mycologie Méditerranéenne, Nice, 39-70.
Newman E.I., Reddell P. (1987). The distribution of mycorrhizas among families of vascular plants. New Phytologist, 106: 745–751.
Newsham K.K., Fitter A.H., Watkinson A.R. (1995). Multifuntionality and biodiversity in arbuscular mycorrhizas. Tree, 10: 407-411.
Nogueira M.A., Magelhaes G.C., Cardoso E.J.B.N. (2004).Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J. Plant Nutr., 82:271-278.
Norman M.J.T., Pearson C.J., Searle P.G.E. (1995). The Ecology of Tropical Food Crops. Cambridge University Press, Cambridge: 436.
Nounsi A., Outcoumit A., Talbi Z., Touati J., Ait Aguil F., El Asri A., Ouazzani Touhami A., Benkirane R., Douira A. (2015). Effect of endomycorrhizal inoculation on the growth of Eucalyptus plants. Biolife, 3: 583-594.
Nounsi A., Outcoumit A., Selmaoui K., and Ouazzani Touhami A., Benkirane R., Douira A. (2014). Inventaire des champignons ectomycorhiziens du Maroc. Journal of Applied Biosciences, 79: 6826 – 6854.
O’Herlihy E.A., Duffy E.M., Cassells A.C. (2003). The effect of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobotanica, 38: 201-207.
Oehl F., da Silva G.A., Goto B.T., Maia L.C., Sieverding E. (2011a). Glomeromycota: two new classes and a new order. Mycotaxon, 116: 365-379.
Oehl F., da Silva G.A., Goto B.T., Sieverding E. (2011b). Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon, 116: 75-120.
Offre P., Pivato B., Siblot S., Gamalero E., Corberand T., Lemanceau P., Mougel C. (2007). Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Applied and Environmental Microbiology, 73: 913-921
Ohtomo R., Saito M. (2005). Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytologist, 167: 571-578.
Ojala J.C., Jarrell W.M., Menge J.A., Johnson E.L.V. (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal, 75: 255-259.
Olàh B., Brière C., Bécard G., Dénarié J., Gough C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal, 44: 195-207.
Olsson P.A., Van Aarle I.M., Allaway W.G., Ashford A.E., Rouhier H. (2002). Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiology, 130: 1162-1171.
Ouahmane L. (2007). Rôle des mycorhizes et des plantes compagnes (lavande et thym) sur la croissance du cyprès de l’Atlas (Cupressus atlantica G.): conséquences sur la biodiversité rhizosphérique et la réhabilitation des sites dégradés. Thèse de Doctorat National, Fac. Sc. Semlalia, Marrakech. 226 p.
Outkoumit A. (2011). Contribution à l’étude de la diversité fongique du Maroc et mise en évidence de quelques espèces fongicoles et de l’importance des espèces sécotïdes dans la systématique des Basidiomycètes. Thèse de Doctorat, Université Ibn Tofaïl, Faculté des Sciences, Kénitra, Maroc, 497p.
Paulitz T., Linderman R. (1991). Mycorrhizal interactions with soil organisms., In: Arora B, R.D., Mukerji K, Knudsen G (Ed.), Handbook of applied mycology. Marcel Dekker, New York. 77-129.
Pawlowska T., and Taylor J.W. (2004). Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature, 427: 733-737.
Pawlowska T.E., Douds D.D., Charvart I. (1999). In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol. Res., 103: 1549–1556.
Pearson J.N., Jakobsen I. (1993). The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 124: 489-494.
Peyronel B., Fassi B., Fontana A., Trappe J. M. (1969). Terminology of mycorrhizae. Mycologia 61: 410–411.
Pfeiffer C.M., Bloss H.E. (1988). Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol., 108 : 315-321.
Plenchette C., and Clermont-Dauphin C., Meynard J.M., Fortin J. A. (2005). Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science, 65:31- 40.
Plenchette C. (1991). Utilisation des mycorhizes en agriculture et horticulture. In: Strullu DG, Garbaye J, Perrin P, Plenchette C (éd.), Les mycorhizes des arbres et plantes cultivées. Technique et Documentation, Lavoisier. 131-196.
Porcel R., Aroca R., Ruiz-Lozano J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32: 181-200.
Porcel R., Aroca R., Cano C., Bago A., Ruiz-Lozano J.M. (2006). Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microbial Ecology, 52: 575-582.
Porcel R., Ruiz-Lozano J.M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55: 1743-1750.
Porcel R., Barea J. M., Ruiz-Lozano J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol., 157: 135–143.
Pozo M.J., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J.M., Azcon-Aguilar C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53: 525-534.
Pozo M.J., Verhage A., García-Andrade J., García J.M., Azcón-Aguilar C. (2009). Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C., Barea J.M., Gianinazzi S., Gianinazzi-Pearson V. (eds) Mycorrhizas: functional processes and ecological impact. Springer-Verlag, Allemagne, Chap. 9: 123-135.
Ramoliya P.J., Patel H.M., Pandey A.N. (2004). Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). Forest Ecology and Management, 202: 181-193.
Ravnskov S., Nybroe, O. and Jakobsen, I. (1999). Influence of arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hydrosphere soil. New Phytologist, 142: 113-122.
Rasmussen N., Lloyd D.C., Ratcliffe R.G., Hansen P.E., Jakobsen I. (2000). P-31 NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant and Soil, 226: 245-253.
Read D.J., Kjanmehr H., Malibari A. (1977). The biology of mycorrhiza in Helianthemum Mill. New Phytologist, 78: 305-312.
Read D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47: 376–391.
Redecker D., Schüßler A., Stockinger H., Stuermer S.L., Morton J.B., Walker C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23: 515-531.
Redecker D., Raab P., Oehl F., Camacho F.J., Courtecuisse R. (2007). A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycological Progress, 6: 35-44.
Redecker D., Morton J.B., Bruns T.D. (2000a). Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol. Phyloge. Evol. 14: 276-284.
RedeckerD., MortonJ.B. and BrunsT.D. (2000b). Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Scerocystis coremioides. Mycologia, 92:282-285
Reinhardt D. (2007). Programming good relations development arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 10: 98-105.
Remy W., Taylor T.N., Hass H., Kerp H. (1994). Four hundred million year old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U.S.A., 91:11841-11843.
Requena N., Serrano E., Ocόn A., Breuninger M. (2007). Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry, 68: 33-40.
Richardson A.E., Hocking P.J., Simpson R.J., George T.S. (2009). Plant mechanisms to optimize access to soil phosphorus. Crop and Pasture Science, 60: 124-143.
Rillig M.C., Mummey D.L. (2006). Mycorrhizas and soil structure. New Phytol., 171: 41–53.
Rillig M.C., Wright S.F., Eviner V.T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238: 325-333.
Rillig M.C., Wright S.F., Nichols K.A., Schmidt W.F., Torn M.S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soil. Plant and Soil, 233: 167-177.
Rincon A., de Felipe M.R., Fernandez-Pascual M. (2007). Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza, 18: 23–32.
Roy-Bolduc A., and Hijri M. (2010). The Use of Mycorrhizae to Enhance Phosphorus Uptake: A Way out the Phosphorus Crisis. Journal of biofertilizers and biopesticides, 2: 1-5.
Rubio R., Borie F., Schalchli C., Castillo C. and Azcon R. (2002). Plant growth responses in natural acidic soil as affected by arbuscular mycorrhizal inoculation and phosphorus sources. Journal of Plant Nutrition, 25: 1389-1405.
Ruiz-Sánchez M., Aroca R., Muñoz Y., Polón R., Ruiz-Lozano J.M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167: 862-869.
Salido A.L., Hasty K.L., Butcher D.J. (2003). Phytoremediation of arsenic lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation, 5: 89-103.
Sánchez-Blanco M.J., Ferrández T., Morales M.A., Morte A., Alarcón J.J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 161: 675-682.
Sanders I.R., Croll D. (2010). Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annual review of genetics, 44: 271–92.
Sanders l.R. (2002). Specicity in the arbuscular mycorrhizal symbiosis. In: van der Heijden, M.G.A., Sanders, I.R. (Eds.), Mycorrhizal Ecology. Springer, Berlin: 415-437.
Sanyal S.K., De Datta S.K. (1991). Chemistry of phosphorus transformations in soil. Advances in Soil Sciences, 16: 1-50.
Scannerini S., Bonfante-Fasolo P. (1982). Données actuelles sur la cytologie des mycorhizes. In: Les mycorhizes, partie intégrante de la plante: biologie et perspectives d’utilisation. Coll. I.N.R.A., Dijon, France. 13: 25-36.
Scheublin T.R., Sanders I.R., Keel C., Van Der Meer J.R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J., 4:752-763.
Schoknecht J.D., Hattingh M.J. (1976). X-ray microanalysis of elements in cells of VA mycorrhizal and nonmycorrhizal onions. Mycologia, 68: 296-303.
Schreiner R.P., Bethlenfalvay G.J. (1995). Mycorrhizal interactions in sustainable agriculture. Critical Reviews in Biotechnology, 15: 271-285.
Schtiepp H., Dehn B., Sticher H. (1987). Interaktionen zwis-chen VA-Mykorrhiza und Schwermetallbelastungen. Angew. Bot., 61 85-96.
Schüßler A., and Walker C. (2010).The Glomeromycota. A species list with new families and new genera. The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.
Schüßler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105:1413–1421.
Schwarzott D. and Schüßler A. (2001). A simple and reliable method for SSU rRNA gene DNA-extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza, 10: 203–207.
Schwarzott, D., Walker, C. & Schüßler, A. (2001). Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Molecular Phylogenetics and Evolution, 21: 190–197.
Sellal Z., Ouazzani Touhami A., Mouden N., Chliyeh M., Selmaoui K., Dahmani J., Benkirane R., El Modafar C., Douira A. (2019). The effectiveness of seed coating with composite endomycorrhizal inoculum for establishing mycorrhization and growing Argan seedlings. Intereciencia journal, 4: 44.
Sellal Z., Ouazzani Touhami A., Chliyeh M., Dahmani J., Benkirane R., Douira A. (2016). Arbuscular Mycorrhizal fungi species associated with rhizosphere of Argania spinosa(L.) Skeels in Morocco. Int. J. Pure App. Biosci., 4: 82-99.
Selmaoui K., Artib M., Semane F., El Gabardi S., Hibilik N., El aymani I., Chliyeh M., Mouria A., Ouazzani Touhami A., Benkirane R., Douira A. (2017). Diversity of endomycorrhizal fungi (a.m.f.) in the rhizosphere of sugarcane (Saccharum officinarum) grown in Morocco, International Journal of Recent Scientific Research Research, 8: 15753-15761.
Selosse M.A. (2001). La symbiose: ses rôles écologiques et évolutifs. Résumé de la conférence présentée le 3 mars à la société des Amis du Muséum National d’histoire naturelle. 37-39.
Selosse M.A. (2000). La symbiose: structures et fonctions, rôle écologique et évolutif. Paris, Vuibert, 152 p.
Semane F., Chliyeh M., Kachkouch W.,Touati J., Selmaoui K., Ouazzani Touhami A., Abdelkarim Filali-Maltouf A., El Modafar C., Moukhli A., Benkirane R., Douira A. (2018). Follow-up of a Composite Endomycorrhizal Inoculum in the Rhizosphere of Olive Plants Analysis after 42 Months of Culture. Annual Research & Review in Biology, 22: 1-18.
Semane F., Chliyeh M., Talbi Z., Touati J., Ouazzani Touhami A., Filali-maltouf A., Benkirane R., Douira A. (2017). Effects of a Composite Endomycorrhizal Inoculum on Olive Cuttings under the Greenhouse Conditions. International Journal of Environment, Agriculture and Biotechnology, 2: 1070–1083.
Sghir F., Touati J., Chliyeh M., Ouazzani Touhami A., Filali-maltouf A.El Modafar C., Moukhli A., Oukabli A., Benkirane R and Douira A (2015). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of date palm tree (Phoenix dactylifera) in Tafilalt and Zagora regions (Morocco). Int. J. Pure App. Biosci., 2: 30–39.
Sghir F., Chliyeh M., Kachkouch W., Khouader M., Ouazzani Touhami A., Benkirane R., Douira A. (2013). Mycorrhizal status of Olea europaea spp. oleaster in Morocco. Journal of Applied Biosciences, 61: 4478–4489.
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2, 587.
Sharples J.M, Chambers S.M, Meharg A.A, Cairney J.W.G. (2000). Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol., 148:153–162
Sharifi M., Ghorbanli M., Ebrahimzadeh H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164: 1144-1151.
Sheng M., Tang M., Chen H., Yang B., Zhang F., Huang Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18: 287-296.
Shetty K.G., Banks M.K., Hetrick B.A., Schwab A.P. (1994). Biological characterization of a southeast Kansas mining site. Water, Air and Soil Pollution, 78, 169–177.
Shibata R., Yano K. (2003). Phosphorus acquisition from nonlabile sources in peanut and pigeonpea with mycorrhizal interaction. Applied Soil Ecology, 24: 133-141.
Sieverding E. (1991). Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ). Eschbom. Germany. 371.
Simon L., Bousquet J., Levesque R.C., Lalonde M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363: 67–69.
Smith S.E. and Smith F.A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104: 1-13.
Smith S.E., Jakobsen I., Grønlund M., Smith F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156: 1050-1057.
Smith S. E., Christophersen H. M., Pope S., Smith F. A. (2010). Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant and Soil, 327:1–21.
Smith S.E., Read D.J. (2008). Mycorrhizal symbiosis. 3rd ed. Academic Press, San Diego, 16-32.
Smith S.E., Smith F.A., Jakobsen I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162: 511-524.
Smith S.E., Smith F.A., Jakobson I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol., 133: 16-20.
Smith S.E., Smith F.A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol., 114: 1–38.
Smith S.E., Gianinazzi-Pearson, V. (1988). Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Mol. Biol., 39: 221–244.
Solaiman M.Z., Ezawa T., Kojima T., Saito M. (1999. Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and Environmental Microbiology, 65: 5604-5606.
Sorensen J.N., Larsen J., Jakobsen I. (2005). Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant and Soil, 273: 101–114.
Souza T. (2015). Spores: A special tool to survive. In: Handbook of arbuscular mycorrhizal fungi, (Springer International Publishing). 65–86.
Srivastava D., Kapoor R., Srivastava S.K., Mukerji K.G. (1996). Vesicular arbuscular mycorrhiza- an overview. In: Mukerji K.G.: Concets in mycorrhizal research. Handbook of Vegetation Science, Boston, Massachussets, USA, 19: 1-40.
St-Arnaud M., Hamel C., Caron M., Fortin J.A. (1995). Endomycorrhizes VA et sensibilité des plantes aux maladies: synthèse de la littérature et mécanismes d’interaction potentiels. In: La symbiose mycorhizienne état des connaissances. (Ed.) Orbis Frelisghburg, Québec, Canada. 51-87.
Stevenin A. (2011). Symbiose mycorhizienne : développement de nouvelles méthodes pour la synthèse de glycoconjugués bioactifs. Thèse, Université Paris Sud - Paris XI, 329 p.
Strullu D.G. (1991). Les mycorhizes des arbres et des plantes cultivées. Techniques et Documentation Lavoisier. Paris /; 242 p.
Strullu D.G. (1985). Les mycorhizes Handbuch der Pflanzenanatomie. Berlin, Germany: Gebruder Borntraeger.
Stürmer S.L. (1998). Chacarcterization of diversity of fungi forming arbuscular endomycorrhizae in selected plant communities. Thesis in Forestry and Consumer Science. December, Morgantown, West Virginia. USA, 94p.
Subramanian K.S., Charest C. (1997). Nutritional, growth, and reproductive responses ofmaize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza, 7: 25-32.
Subramanian K.S., Charest C. (1999). Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought- stressed and well- watered conditions. Mycorrhiza, 9:69-75.
Sylvia D.M., Wilson D.O., Graham J.H., Maddox J.J., Millner P., Morton J.B., Skipper H.D., Wright S.F., Jarstfer A.G. (1993). Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol. Biochem., 25: 705–713.
Tahiri A. (1997). Relation mycorhiziennes entre Helianthemum ledifolium (L) Mill. et les espèces de Terfez du Maroc. Mémoire deTroisième cyle en Agronomie. Ecole nationale d’agriculture de Meknès, 80p.
Taktek S., Trépanier M., Magallon P., St-Arnaud M., Piché Y., Fortin J.A., Antoun H. (2015). Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol. Biochem., 90: 1-9.
Talbi Z., El Asri A., Touati J., Chliyeh M., Ait aguil F., Selmaoui K., Sghir F., Ouazzani Touhami A., Benkirane R., Douira A. (2015). Morphological characterization and diversity of endomycorrhizae in the rhizosphere of Carob tree (Ceratonia siliqua) in Morocco. Biolife, 3:196-211.
Talbi Z., Chliyeh M., Selmaoui K., Ouazzani Touhami A., Benkirane R., Douira A. (2014). Mycorrhizal status of Populus alba and accompanying species of riparian forest in the Reserve of Sidi Boughaba (Northwest of Morocco). International Journal of Plant, Animal and Environmental Sciences, 4: 126-133.
Tanaka Y., Yano K. (2005). Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell and Environment, 28: 1247-1254.
Tao L., Zhiwei Z. (2005). Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Appl. Soil Ecol., 29: 135-141.
Taylor A.F.S., Alexander I. (2005). The ectomycorrhizal symbiosis: life in the real world. Mycologist, 19: 102-112.
Tedersoo L., May T.W., Smith M.E. (2010). Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20:217–263.
Tisdall J.M. (1994). Possible role of soil microorganisms in aggregation in soils. Plant and Soil, 159: 115-121.
Tisdall J.M. (1991). Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29: 729-743.
Tisdall J.M., Oades J.M. (1979. Stabilization of soil aggregates by the root segments of rye grass. Aust. J. Soil Res. 17: 429-441.
Tisserant E., Kohler A., Dozolme-Seddas P., Balestrini R., Benabdellah K., Colard A., Croll D., Da Silva C., Gomez S K., Koul R. (2012). The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New phytologist, 193: 755–69.
Tisserant B., Gianinazzi-Pearson V., Gianinazzi S., Gollote A. (1993). In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycological Research, 97: 245-250.
Toljander J.F., Artursson V., Paul L.R., Jansson J.K., Finlay R.D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters. 254: 34- 40.
Touati J., Chliyeh M., Ouazzani Touhami A., Benkirane R., Douira A. (2015). Effect of arbuscular mycorrhizal fungi on plant growth and root development of the boxthorn tree (Lycium Europaeum) under greenhouse conditions. Int. J. Pure App. Biosci., 2:84-91.
Toussaint J.P., St-Arnaud M., Charest C. (2004). Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology, 50: 251-260.
Torrey J.G. (1992). Can plant productivity be increased by inoculation of tree roots with soil microorganisms. Can. J. For. Res., 22: 1815-1923.
Trépanier M., Bécard G., Moutoglis P., Willemot C., Gagné S., Avis T.J., Rioux J-A. (2005). Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Applied and environmental microbiology, 71: 5341–5347.
Trépanier M. (1998). Effets des champignons endomycorhiziens sur le bouturage et la croissance de plantes ligneuses ornementales. Mémoire de grade Master Science. Faculté des sciences de l’agriculture et de l’alimentation. Université Laval, Canada, 90 p.
Uetake Y., Kojima T., Ezawa T., Saito M. (2002). Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytologist, 154: 761-768.
Van Aarle I.M., Olsson P.A. (2008). Resource partitioning between extraradical and intraradical AM fungal mycelium. Dans: Varma A. (ed) Mycorrhiza: gentics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edition. Springer-Verlag, Allemagne. 321-336.
Van Aarle I.M., Cavagnaro T.R., Smith S.E., Smith F.A., Dickson S. (2005). Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization. New Phytologist, 166: 611-618.
Van Aarle I.M., Rouhier H., Saito M. (2002). Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability. Mycological Research, 106: 1224-1229.
Van Aarle I.M., Olsson P.A., Söderström B. (2001). Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia, 93: 17-24.
Van der Heijden M. G. A., Bardgett R. D., Van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett., 11:296– 310.
Vestberg M., Cassells A.C. (2009). The use of AMF and PGPR inoculants Singly and Combined to promote Microplant Establishment, Growth and Health. A. Varma and A. C. Kharkwal (eds.), Berlin, Chapter 21, Symbiotic Fungi, Soil Biol. 18:337-360.
Viereck N., Hansen P.E., Jakobsen I. (2004. Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytologist, 162: 783–79.
Vierheilig H., Piché Y. (2002). Signaling an arbuscular mycorrhiza: fact and hypothesis .In :Buslig B . manthey J . (eds) .flavonoid in cell function kluwer academic publisher plenum Press New York. 23-39.
Vos C.M., Tesfahun A.N., Panis B., De Waele D., Elsen A. (2012). Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology, 61: 1-6.
Wang B., and Qiu Y.L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16: 299-363.
Weiersbye I.M., Straker C.J., Przybylowicz W.J. (1999). Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nuclear Instruments and Methods in Physics Research B., 158: 335-343.
White T.J., Bruns T.D., Lee S., and Taylor J.W. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogelletics” In PCR protocols: a guide to methods and applications. Ed. Innis M, Gelfand D, Sninsky J & White Tj. Academic Press, New York. 315-322.
Whipps J.M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82: 1198-1227.
Wu Q.S., Xia R.X., Zou Y.N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44: 122-128.
Wubet T., Kottke I., Teketay D., Oberwinkler F. (2003). mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For. Ecol. Manage., 179: 387-399.
Xinshu L., Runjin L. (1990). Influence of VA mycorrhiza and phosphorus on the mineral nutrition and growth of Malus hupehensis. Acta. Hortic., 274: 303.
Yokoi S., Quintero F.J., Cubero B., Ruiz M.T., Bressan R.A., Hasegawa P.M., Pardo J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal, 30: 529-539.
Yu T.E., Egger K.N., and Peterson L.R. (2001). Ectendomycorrhizal associations characteristics and functions. Mycorrhiza, 11: 167–177.
Zegaye F., Khalid A., Hasnaoui A., Caid Serghini H., El Amrani A. (2012). Ectomycorrhization of Date Palm and Carob Plants. Global Journal of Science Frontier Research Biological Sciences, 12: 13-20.
Zhong Q.H., Chao X.H., Zhi B.Z., Zhi R.Z., Huai S.W. (2007). Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surface B: Biointerfaces, 59: 128-133.
Zhu H.H., Yao Q. (2004). Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibit Ralstonia solanacearum. Journal of Phytopathology, 152: 537-542.